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Abstract— When a gene shows varying levels of expression among normal people but similar levels in disease patients or shows 

similar levels of expression among normal people but different levels in disease patients, we can assume that the gene is 

associated with the disease. By utilizing this gene expression heterogeneity, we can obtain additional information that abets 

discovery of disease-associated genes. In this study, we used collaborative filtering to calculate the degree of gene expression 

heterogeneity between classes and then scored the genes on the basis of the degree of gene expression heterogeneity to find 

“differentially predicted” genes. Through the proposed method, we discovered more prostate cancer-associated genes than ten 

comparable methods. The genes prioritized by the proposed method are potentially significant to biological processes of a disease 

and can provide insight into them. 

Index Terms— Gene selection, Gene prioritization, Disease-associated genes, Prostate cancer-associated genes, Gene expression 

heterogeneity 

——————————   �   —————————— 

1 INTRODUCTION 

HE average life expectancy of human has increased throughout the world on account of advancements in medical sci-

ence [1]. With large gains in life expectancy, a rising interest exists in disease management. If the diagnosis and prog-

nosis are precisely predicted, the correct therapeutic methods can be used and significant disease damage can thereby be 

avoided. Indicators (biomarkers), such as genes or proteins, are typically used in predicting the diagnosis and prognosis of 

a disease [2-3]. Many biologists must choose which genes or proteins to investigate; therefore, gene prioritization has be-

come increasingly important. Four computational strategies for gene prioritization exist [4]: filtering, text mining, similari-

ty profiling and data fusion, and network-based. In the filtering strategy, filters are defined by properties of the ideal can-

didate gene. In the text-mining strategy, disease-relevant keywords are employed to retrieve disease-relevant literature, 

which is mined to identify candidate genes. In the similarity profiling and data fusion strategy, similarities between the 

candidate genes and known genes from various data sources are considered. In the network-based strategy, candidate 

genes in a gene network are selected based on the distance between the candidate genes and known disease genes. The 

proposed method is categorized as a filtering strategy because it employs a filter defined by heterogeneous gene expres-

sion characteristics. 

Genes that are differentially expressed between two different conditions (i.e., malignant and benign) have received consid-

erable attention because they are expected to predict the diagnosis and prognosis of the disease [5-6]. Feature selection 

methods can be used to identify genes that are differentially expressed between the two different conditions. In bioinfor-

T 
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matics field, they are generally used in classification problems since they can increase prediction performance and reduce 

data dimensions [7]. The features chosen by feature selection methods increase prediction performance, which indicates 

that those features have the characteristics that can distinguish between the conditions. This supports the fact that feature 

selection can identify differentially expressed genes. 

A typical approach for feature selection is a method using conditions (class labels) of samples. The worth of an attribute 

can be evaluated by calculating the value of the chi-square statistic [8] with respect to classes of data. A chi-square value is 

calculated using the difference between the observed frequency and expected frequency between an attribute and a class. 

The larger the chi-square value is, the more interdependent the attribute and class become. This can imply that there is a 

strong connection between the attribute and class. Several methods of feature selection based on information theory exist. 

Information gain [9] chooses an attribute by comparing information before and after the classification. Assuming that the 

total information is given, the information gain is the amount of decreased information after being classified into the at-

tribute. The larger the gain, the better the attribute is. However, information gain is biased towards choosing attributes 

which have various and diverse types of values. Gain ratio [10] has been suggested as a remedy for the problem. Although 

gain ratio is similar to information gain, gain ratio overcomes the bias of information gain by normalizing the information 

gain using the split information. Symmetrical uncertainty [11], which divides the information gain by the sum of the in-

formation of variables, can compensate for the weakness of information gain. The imbalance resulting from not normaliz-

ing information gain can be solved if the information gain is divided by the sum of the information of the attribute and 

class. The Relief-A [12] feature selection method does not analyze the correlation between attributes and classes; rather, it 

analyzes the characteristics of attributes. It assumes that, if an attribute is useful, the attribute values of samples belonging 

to the same class become similar, but the attribute values of samples belonging to the different class have a different pat-

tern. Relief-A finds the nearest neighbor (nearest hit) within the same class in terms of the Euclidean distance, and the 

nearest neighbor (nearest miss) in other classes; it then evaluates the importance of the attribute. However, because the 

method becomes vulnerable to noise on account of finding only the one nearest neighbor and produces the wrong out-

come, it finds k neighbors (k is a number the user selects) and it utilizes the average value of the neighbors as an attribute 

weighting. 

In gene expression analysis field, some statistical methods are widely used. The simplest statistical method for discovering 

differentially expressed gene is the t-test [13]. The t-test examines whether two conditions of data are significantly different 

from each other or not based on an assumption that the data is normally distributed. Limma [14] is one of the most power-

ful models for detecting differential gene expression. Limma is especially good for data with small number of samples be-

cause limma is similar to the t-test but it pools information across other genes to moderate the standard errors. 
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Gene selection is a method for identifying differentially expressed genes, which can play the role of biomarkers in predict-

ing the diagnosis and prognosis of a disease. However, the degree of differential expression is not necessarily biologically 

meaningful [15]. Therefore, it is important to identify genes relating to biological processes of a disease rather than differ-

entially expressed genes that are helpful for classifying disease conditions. CV (Correlation Vector) method [16] is used to 

identify differentially correlated genes under different conditions, but not differentially expressed genes under different 

conditions. For example, CV is used to identify genes that differ in their degree of correlation with other genes between 

Class 1 and Class 2. CV can identify potentially important genes that have not been identified by traditional methods us-

ing the differentially correlated approach. 

We propose a novel gene selection method GSEH (Gene Selection using Expression Heterogeneity) that employs gene ex-

pression heterogeneity to identify genes relating to biological processes of a disease. The gene expression heterogeneity 

signifies that samples in the same class can have dissimilar gene expression levels. Specifically, Gene expression levels 

from one class can have various gene expressions while gene expressions from the other one have similar values. The class 

indicates a label of the samples (e.g., tumor, normal). The concept of gene expression heterogeneity can be used as benefi-

cial information to discover disease-associated genes. The collaborative filtering method, which is often used in recom-

mendation systems, is employed in the proposed method to estimate gene expression heterogeneity. The greater the de-

gree of heterogeneity, the more difficult is the prediction task. Therefore, it can be estimated that the greater the difference 

in predicted levels, the more closely the gene relates to a disease. GSEH uses the “predictability” of gene expressions be-

tween two conditions to select disease-associated genes. GSEH is not intended to replace pre-existing methods; rather, it is 

intended to provide additional information for discovering genes that are related to diseases. 

There are some methods which consider gene expression heterogeneity [17-20]. Tomlins et al. [17] proposed cancer outlier 

profile analysis (COPA) because in many of cancer datasets, heterogeneous patterns of oncogene activation have been ob-

served. The COPA employs a simple approach based on the median and median absolute deviation of gene expression 

datasets. They also implemented COPA as part of Oncomine database (www.oncomine.org). MacDonald et al. [18] imple-

mented the COPA in an R package because COPA on Oncomine is not extensible and limited to analyze significance of a 

specific outlier. Leek et al. [19] introduced surrogate variable analysis to capture gene expression heterogeneity. They treat-

ed the heterogeneity as a noise and tried to reduce the heterogeneity to obtain surrogate variable without the heterogeneity. 

Wang et al. [20] proposed modified cancer outlier profile analysis (mCOPA) because original COPA considers only up-

regulated outliers. They considered both up-regulated outliers and down-regulated outliers to accurately identify gene 

expression heterogeneity. 

As mentioned in the similar studies above, gene expression heterogeneity is a crucial factor in gene expression analysis. 
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We investigated related methods to compare with GSEH (Table 1). 

 

Table 1. A summary of GSEH and similar methods 

Methods Background Rationale Characteristic Result 

Chi-square Chi-squared statistic 
Dependency between 
attributes and classes 

Calculates correlation 

between attributes 

and classes 

Genes correlated 
with classes 

Information Gain 

Information theory 
Information before 

and after classification 

Bias problem 

Genes related with 
classification 

Gain Ratio 
Normalized version of 

information gain Symmetrical 

Uncertainty 

Relief-A Nearest neighbor 
Distance between target 

attribute and neighbors 
Vulnerable to noise 

Differentially 

valued genes 

CV Correlation vector 
Difference in the degree of 
correlation with other genes 

Utilizes correlation 

information as a new 

selection criterion 

Differentially 
correlated genes 

t-test 

t-statistic 
Statisical difference 

between two groups 

Vulnerable to 

small sample size 
Differentially 

expressed genes 

Limma 
Utilizes empirical Bayes 

method to moderate 
the standard error 

COPA Outlier profile analysis 
Gene expression 

heterogeneity 

Numerical transformation 

based on median and 

median absolute deviation 

Highly 
overexpressed genes 

GSEH Recommendation system 
Uses 

collaborative filtering 
Differentially 

predicted genes 

 

GSEH employs two steps to select genes (Figure 1). The first step is to create a new matrix using collaborative filtering. 

Collaborative filtering selects samples with a similar pattern utilizing their correlation; it then calculates expected scores of 

the target genes of the samples using the selected samples. The second step is to calculate each gene’s prioritization score 

by comparing the data produced in the first step with the original data; it then selects genes based on their scores. The 

greater the difference in the predicted degree level between the two conditions, the higher the score becomes. Finally, the 

genes with high scores are selected. 
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Figure 1. Flow of the GSEH algorithm 

 

2 METHODS 

GSEH employs collaborative filtering to select biologically meaningful candidate genes. The GSEH process is generally 

divided into two phases. The first phase involves constructing a predicted gene expression matrix using collaborative fil-

tering; the second phase involves calculating the rank scores of the genes using a comparison between the predicted gene 

expression matrix and original gene expression matrix. When the calculation of the scores is complete, the genes can be 

ranked in order and k top-ranking genes can be selected. A formal description of GSEH is outlined in Algorithm 1. 

 

2.1 Materials 

Datasets applied in this study were Singh [21], GSE15484, and TCGA_PRAD (The Cancer Genome Atlas: Prostate Adeno-

carcinoma). The Singh dataset is comprised of 52 prostate cancer samples and 50 benign samples; each sample has 8,828 

gene expression levels. GSE15484 is also a gene expression dataset from prostate cancer patients; it is registered in the GEO 

(Gene expression Omnibus) database of the NCBI (National Center for Biotechnology Information). GSE15484 contains 25 

samples with a Gleason score of 6, 27 samples with a Gleason score of 8 through 10, and 13 benign samples. We performed 

GSEH with GSE15484 dataset with two conditions; (high risk vs low risk) and (cancer vs benign). The 6-Gleason-scoring 

samples are considered to be low risk (non-aggressive) and the 8, 9, and 10-Gleason-scoring samples are considered to be 

high risk (aggressive). TCGA _PRAD is prostate adenocarcinoma RNA-Seq data from TCGA
1
. It contains 297 tumor sam-

ples and 50 normal samples which are normalized by RSEM (RNA-Seq by Expectation Maximization). Because the num-

ber of samples in each class in TCGA_PRAD is largely dissimilar and a lot of samples cause high time complexity, we ran-

________ 
1
 The Cancer Genome Atlas (https://tcga-data.nci.nih.gov/tcga/dataAccessMatrix.htm) 
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domly chose the same number of samples as smaller number in the larger number of class (50:50), iteratively tested 10 

times and computed the average as a result in TCGA_PRAD dataset. Singh and TCGA_PRAD datasets are related to pros-

tate cancer diagnosis and GSE15484 dataset is related to prostate cancer diagnosis and prognosis. The datasets and pro-

gramming code of GSEH are available at (http://embio.yonsei.ac.kr/files/hjkim/gseh.zip). 

 

 

Input: Gene expression data OM(i x j), Pearson correlation coefficient threshold t 

Output: List of ranked genes 

 

1.   For each sample s from data OM(i x j), Do 

2.      For each sample s' from data OM(i x j) except s, Do 

3.         Calculate Pearson correlation coefficient p between s and s' in the same class 

4.         If p ≥  t, Then add sample s' to neighbor list of sample s 

5.      End For 

6.      For each gene gi from sample s, Do 

7.         Calculate predicted gene expression of gi 

8.      End For 

9.      Construct predicted gene expression matrix PM(i x j) with predicted gene expressions 

10.  End For 

11.  For each class l, Do 

12.     For each gene gi, Do 

13.        For each sample sj in class l, Do 

14.           Compute matrix difference d of gene gi for each class l 

15.        End For 

16.     End For 

17.  End For 

18.  Calculate rank score ri of gene gi by using d of each class 

 

Algorithm 1. The algorithm of GSEH 
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2.2 Predicted Gene Expression Matrix Construction 

Gene expression data can be reconstructed by collaborative filtering [22-24], which is commonly used in recommendation 

systems. Collaborative filtering takes various forms; in this study, we employed user-based collaborative filtering. User-

based collaborative filtering is comprised of two steps. The first step involves selecting neighbor samples for a given sam-

ple. A neighbor sample indicates a sample that has characteristics similar to the given sample and the Pearson correlation 

coefficient is used as a selection criterion in this method. Pearson correlation coefficient Pxy can be described as follows: 

∑∑
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In the equation, X is the given sample for prediction, and X  is the average of gene expressions for X. xσ  is the standard 

deviation of the average gene expression for X. iX  indicates the i-th gene expression of sample X. Y is the remaining sam-

ples excluding sample X. The Pearson correlation coefficient should be a real number between -1 to 1. The value closest to 

1 can be considered a similar sample, and the value closest to -1 is a negatively similar sample. The value closest to 0 is a 

dissimilar sample. To predict gene expression levels using samples that have similar gene expression patterns, the samples 

that have a positive relation with the given sample as neighbors should be chosen using the Pearson correlation coefficient 

(Figure 2). The neighbors of the target sample are selected among the other samples in the same class. To be more specific, 

the correlations among the target sample and the other samples from the same class are calculated; samples with a Pearson 

correlation equal to or greater than threshold c are chosen as neighbors. If we repeat this process for all cells in the dataset, 

we can determine the neighbors of all the cells. 

 

 

Figure 2. Process of selecting neighbor samples using the Pearson correlation coefficient 
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The second step is to predict the gene expression level of a given cell based on the neighbor's gene expression levels. The 

gene expression level of the given target cell is predicted based on the gene expression levels of the samples that have a 

larger Pearson correlation coefficient than threshold c. Collaborative filtering approach produces a prediction with sum of 

weighted average of neighbor samples. A predicted gene expression level for i-th row and j-th column Vij is described as 

follows: 

  (2) 

   

In the equation, Vij is a predicted expression value for i-th row and j-th column.  is the average expression in all the genes 

of the sample Sj, and Neighbor is a set of neighbor samples of the sample Sj. Sn is one of the neighbor samples, and Ein is the 

i-th gene expression level of the neighbor sample Sn.  is the average expression of all the genes of the neighbor sample Sn, 

and  indicates the Pearson correlation coefficient between the sample Sj and neighbor sample Sn. If the sample Sj has 

no neighbors, Vij = Eij, which indicates that the predicted value has the same gene expression as the original value and that 

there is no prediction. We can predict the expression level for a certain gene of a given sample using this equation. For ex-

ample, we can predict the gene expression level of gene g1 and sample S1 using gene expression levels of the neighbor 

samples of 1S (Figure 3). 

 

 

Figure 3. An example of calculating a predicted value and constructing predicted matrix 

Expression levels of all the genes and all the samples can be predicted by employing the collaborative filtering described 
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above. If we apply the equation to all the cells in the original matrix, we will have a predicted matrix with predicted gene 

expression levels. The predicted gene expression levels are used to prioritize genes in the second phase of GSEH. 

 

2.3 Gene Prioritization 

After the construction of the predicted gene expression matrix, we can compute a prioritization score of genes using a 

comparison of the predicted gene expression matrix and original gene expression matrix (Figure 4). 

 

 

Figure 4. Calculation process of the gene prioritization score 

 

The predicted gene expression matrix, which is constructed by using collaborative filtering, has “predicted values”, which 

can be compared to the original values of the same region in the original gene expression matrix. In this study, if the differ-

ence between the predicted expression levels of a gene and the original expression levels of the gene in a class, as well as 

the difference between the predicted expression levels of the gene and the original expression levels of the gene in the oth-

er class, are dissimilar, we assume that the gene has a high possibility of having biological meaning with respect to the dis-

ease. Prioritization score iR  of the i-th gene can be described as follows: 
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* OM
1ij 

= Expression level of the i-th gene and the j-th sample of Class 1 in Matrix OM 

* OM
2ij 

= Expression level of the i-th gene and the j-th sample of Class 2 in Matrix OM 

* PM
1ij 

= Expression level of the i-th gene and the j-th sample of Class 1 in Matrix PM 

* PM
2ij 

= Expression level of the i-th gene and the j-th sample of Class 2 in Matrix PM 

* m = Number of samples in Class 1, n = Number of samples in Class 2 

 

The equation calculates the extent of dissimilarity between the two matrices between the two classes. In short, iR  indicates 

the difference between the matrix differences of the two classes. The greater the difference between the two classes, the 

greater the prioritization score is. A large difference between the two classes of a gene indicates that the gene expression 

prediction in the given class and the gene expression prediction in the other class are dissimilar. Therefore, we can assume 

there is a possibility that the gene has a relation with biological processes of the disease. Accordingly, if genes are ranked in 

order with respect to the prioritization score, the top-scoring genes are potentially significant to biological processes and 

can be efficiently used as biomarkers. 

 

3 RESULTS 

For the experimental environments, we used an Intel® Core™ i3 530 Dual 2.93 GHz, 8 GB RAM machine with the Win-

dows 7 operating system. GSEH was implemented in the Java programming language with JDK 7. We performed an ex-

periment to evaluate the proposed GSEH. The main purpose of GSEH is to provide additional information for discovering 

genes that are related to biological processes of a disease. Therefore, we compared how many disease-associated genes 

were discovered in top-ranking genes (Figure 5). 

 

 

Figure 5. Examples of gene prioritization 
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For example, Singh dataset has 1021 prostate cancer-associated genes among 8828 genes. If we select the top 500 genes 

from the non-prioritized Singh dataset, we can expect there are 58 prostate cancer-related genes (500 x 1021 / 8828) among 

500 genes. We can say our method is meaningful when our method finds more prostate cancer-associated genes among 

top-ranking genes than random selection approach or other methods. Ozgur [25] similarly performed a detailed evalua-

tion of the 20 top-ranking genes by finding evidence of their association to the disease to prove the efficiency of his meth-

od. Moreau [4] introduced statistical benchmarking, which evaluates how well a method discovers known disease-gene 

associations for assessment of the gene prioritization. Because the Singh, GSE15484, and TCGA_PRAD datasets are pros-

tate cancer-associated gene expression data, we analyzed how many prostate cancer-associated genes are included among 

top-scoring genes. The experiment was to find prostate cancer-associated genes among top-scoring genes based on two 

answer sets (Table 2). We searched the prostate cancer-associated genes in the top-ranking genes selected from GSEH for 

validation. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 2. Two answer datasets used in this study 

 Data name Number of prostate cancer genes 

Answer set 1 GeneRIF
2
 1,324 

Answer set 2 

OMIM
3
 18 

845 DDPC
4
 703 

PGDB
5
 124 

 

Before selecting prostate cancer-associated genes with GSEH, Pearson correlation coefficient threshold c should be deter-

mined. It is important to choose a Pearson correlation coefficient threshold because there is trade-off relation between low 

and high thresholds. Because our method employs a user-based collaborative filtering approach, if the correlation coeffi-

cient threshold is too low, the “dissimilar” neighbors can be chosen to predict gene expression levels and performance of 

GSEH can be worse. Otherwise, if the correlation coefficient threshold is too high, there can be no neighbor, which indi-

________ 

2 Gene Reference Into Function (ftp://ftp.ncbi.nih.gov/gene/GeneRIF/generifs_basic.gz). 
3 Online Mendelian Inheritance in Man (http://www.omim.org/). 
4 Dragon Database of Genes Implicated in Prostate Cancer (http://www.cbrc.kaust.edu.sa/ddpc/). 
5 Human Prostate Gene DataBase (http://www.urogene.org/pgdb/). 
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cates that gene expression heterogeneity is not applied. When predicting a gene expression level of a cell in a matrix, pre-

cise prediction is required because the proposed method is based on the difference of predictability between two classes. 

For precise prediction, we should choose similar samples in collaborative filtering process. It is very natural that the higher 

the threshold c is, the more similar the selected neighbors are, the smaller the number of neighbors, and the better the per-

formance is [24, 26-27]. But no neighbor for all cases in a gene indicates difference of predictability cannot be applied and 

prioritization score of the gene will be calculated as 0. Therefore, we analyzed neighbor numbers with varying the correla-

tion coefficient threshold from 0.5 to 0.9 and chose the highest value for threshold c while avoiding the “no neighbor” situ-

ation (Table 3-6). The tables showed that Singh, GSE15484 (high risk vs low risk), and TCGA_PRAD datasets have some 

neighbors when using the threshold of 0.9 but the result of GSE15484 (cancer vs benign) dataset had no neighbor with 0.9 

threshold in benign condition. The experiment of relationship between the threshold and the number of neighbors showed 

which is the proper threshold to use. The number of neighbors should be larger than 0 and at the same time, performance 

should be considerably good. We decided that 0.9 is the appropriate correlation coefficient threshold for Singh, GSE15484 

(high risk vs low risk), and TCGA_PRAD datasets and 0.8 is the appropriate threshold for GSE15484 (cancer vs benign) 

dataset. 

 

 

 

Table 3. Neighbor information of Singh dataset with varying correlation coefficient 

Threshold c 
Average number of neighbors Percentage of no neighbor (%) 

Cancer Benign Cancer Benign 

c < -1 51 49 0 0 

0.5 46.92 36.48 0 0 

0.6 44.92 33.84 0 0 

0.7 41.58 28.96 0 0 

0.8 33.81 21.56 0 0 

0.9 15.62 9.16 7.69 6.00 

c > 1 0 0 100 100 

 

Table 4. Neighbor information of GSE15484 (high risk vs low risk) dataset with varying correlation coefficient 

Threshold c 
Average number of neighbors Percentage of no neighbor (%) 

High risk Low risk High risk Low risk 

c < -1 26 24 0 0 

0.5 20.08 17.04 0 4.00 

0.6 12.37 12.87 0 4.00 

0.7 6.37 9.12 3.70 12.00 

0.8 1.85 6.08 25.93 28.00 

0.9 0.22 2.48 88.89 52.00 
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c > 1 0 0 100 100 

 

Table 5. Neighbor information of GSE15484 (cancer vs benign) dataset with varying correlation coefficient 

Threshold c 
Average number of neighbors Percentage of no neighbor (%) 

Cancer Benign Cancer Benign 

c < -1 51 12 0 0 

0.5 36.20 10.77 0 0 

0.6 24.23 7.85 1.92 0 

0.7 14.69 4.31 1.92 0 

0.8 7.27 0.92 19.23 30.77 

0.9 1.77 0 67.31 100 

c > 1 0 0 100 100 

 

Table 6. Neighbor information of TCGA_PRAD dataset with varying correlation coefficient 

Threshold c 
Average number of neighbors Percentage of no neighbor (%) 

Cancer Benign Cancer Benign 

c < -1 49 49 0 0 

0.5 47.59 33.80 0 0 

0.6 44.28 29.44 0.60 0 

0.7 38.84 23.08 1.20 0 

0.8 27.30 14.96 3.60 2.00 

0.9 8.45 6.96 21.20 18.00 

c > 1 0 0 100 100 

 

 

 

To compare the performance of GSEH with the other related methods, we searched the prostate cancer-associated genes in 

the top-ranking genes selected using GSEH and ten comparable methods (Figure 6-9). The ten similar methods compared 

to GSEH in this study were chi-square statistic, information gain, gain ratio, Relief-A, symmetrical uncertainty, CV, t-test, 

DVE, Limma, and COPA. The DVE (Difference in Variance of Expression) is a simple method similar to COPA which is 

implemented by the authors for comparison. In DVE, gene expressions are normalized first and then the absolute differ-

ences in variance of gene expression between the two conditions are calculated. The genes are prioritized by the scores. 

The DVE uses variance difference between two conditions to tell which condition has more heterogeneous patterns. The 

other nine comparable similar methods are herein described in Introduction section. 

 

In our experiment, chi-square, information gain, gain ratio, Relief-A, and symmetrical uncertainty were performed by We-

ka [28] software. We also performed CV6 by using programming code. But in the experiments of the CV method, a running 

________ 

6 The code of CV is provided at (http://www.urmc.rochester.edu/biostat/people/students/hu.cfm). 
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error occurred and we did not get results from the CV. Therefore only in TCGA dataset, we did experiments with nine 

comparable methods. For experiments of t-test and Limma, we used genefilter and limma packages in R. We implemented 

COPA on our own because the COPA (Tomlins et al.) is not extensible and it can be only utilized on datasets of Oncomine 

database. Furthermore, we compared the result of GSEH with those of randomly selected genes. We could use proportions 

of the prostate cancer-associated genes to all the genes to estimate the result of randomly selected genes. The randomly 

selected genes were expected to have average information of the disease. In gene prioritization, it is important how many 

disease-associated genes are in high-ranking positions because the large number of disease-associated genes in low-

ranking positions indicates bad prioritization. 

 

 

Figure 6. The number of discovered prostate cancer-associated genes of the methods with changing the number of k selected genes 

(CHI = Chi-Square, Info_G = Information Gain, Gain_R = Gain Ratio, RA = Relief-A, SU = Symmetrical Uncertainty). X-axis repre-

sents the number of selected genes k; Y-axis represents the number of prostate cancer-associated genes. (A) Result on GSE15484 (high 

risk vs low risk) dataset validated with Answer set 1. (B) Result on GSE15484 (high risk vs low risk) dataset validated with Answer set 

2. 
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Figure 7. The number of discovered prostate cancer-associated genes of the methods with changing the number of k selected genes 

(CHI = Chi-Square, Info_G = Information Gain, Gain_R = Gain Ratio, RA = Relief-A, SU = Symmetrical Uncertainty). X-axis repre-

sents the number of selected genes k; Y-axis represents the number of prostate cancer-associated genes. (A) Result on GSE15484 (can-

cer vs benign) dataset validated with Answer set 1. (B) Result on GSE15484 (cancer vs benign) dataset validated with Answer set 2. 

 

 

Figure 8. The number of discovered prostate cancer-associated genes of the methods with changing the number of k selected genes 

(CHI = Chi-Square, Info_G = Information Gain, Gain_R = Gain Ratio, RA = Relief-A, SU = Symmetrical Uncertainty). X-axis repre-

sents the number of selected genes k; Y-axis represents the number of prostate cancer-associated genes. (A) Result on Singh dataset 

validated with Answer set 1. (B) Result on Singh dataset validated with Answer set 2. 
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Figure 9. The number of discovered prostate cancer-associated genes of the methods with changing the number of k selected genes 

(CHI = Chi-Square, Info_G = Information Gain, Gain_R = Gain Ratio, RA = Relief-A, SU = Symmetrical Uncertainty). X-axis repre-

sents the number of selected genes k; Y-axis represents the number of prostate cancer-associated genes. (A) Result on TCGA_PRAD 

dataset validated with Answer set 1. (B) Result on TCGA_PRAD dataset validated with Answer set 2. 

 

 

 

 

 

 

Since the GSEH aims to discover disease-associated genes, we analyzed influence of GSEH’s disease-associated prioritiza-

tion score. Gene selection methods prioritize genes based on their own scores and when the top-ranking genes are chosen, 

we count the number of disease-associated genes in the selected top-ranking genes using the answer sets. We searched the 

prostate cancer-associated genes in 1 through 500 top-ranking gene sets with varying the number of top-ranking genes to 

test gene set enrichment. As described in Figure 6-9, GSEH curves are trend up and left which indicates that prioritization 

of GSEH is better than the other methods and has more prostate cancer-associated genes in top 500 ranking genes. The 

results indicate that GSEH can efficiently discover disease-associated genes. 

We also calculated false positive rate (FPR), false negative rate (FNR), p-value, hypergeometric test P(X >= a), and AUC 

(Table 7-10). The measures excluding AUC were computed on top 500 ranking genes. The p-values and the hypergeomet-

ric test P(X >= a) probabilities in the results were calculated by Fisher’s exact test with 2x2 contingency table [29-30]. For 

instance, if there are 100 prostate cancer-associated genes out of 1,000 total genes and there are 50 prostate cancer-

associated genes among the top 200 ranking genes prioritized by a gene selection method, a p-value calculated by Fisher’s 

exact test with the contingency table (a = 50, b = 150, c = 50, d = 750) is 8.66 x 10
-13

 and P(X>=50) is also 8.66 x 10
-13

 as same 
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as the p-value. The AUCs were calculated by using true positive rates and false positive rates with changing the number of 

selected top-ranking genes. 

 

Table 7. Comparison results on GSE15484 (high risk vs low risk) dataset 

Answer set 1 Gene Count (a) False Positive Rate False Negative Rate p-value P(X >= a) AUC 

Chi-square 30 0.0625 0.9435 0.6422 0.7364 0.4957 
Information Gain 26 0.0630 0.9510 0.2259 0.9216 0.4953 

Gain Ratio 23 0.0634 0.9567 0.0629 0.9787 0.4948 

Relief-A 35 0.0618 0.9341 0.7095 0.3799 0.4867 

Symmetrical Uncertainty 25 0.0632 0.9529 0.1620 0.9471 0.4951 

CV 32 0.0622 0.9397 0.9260 0.5995 0.5009 

t-test 27 0.0629 0.9492 0.3058 0.8882 0.4778 
DVE 39 0.0613 0.9266 0.2638 0.1520 0.4923 

LIMMA 37 0.0616 0.9303 0.4562 0.2515 0.5421 

COPA 54 0.0593 0.8983 0.0003 0.0002 0.5368 

GSEH 56 0.0590 0.8945 0.0001 0.0001 0.5398 

Answer set 2 Gene Count (a) False Positive Rate False Negative Rate p-value P(X >= a) AUC 

Chi-square 17 0.0625 0.9472 0.5560 0.7921 0.4885 

Information Gain 16 0.0626 0.9503 0.4093 0.8566 0.4880 

Gain Ratio 14 0.0629 0.9565 0.1935 0.9433 0.4878 

Relief-A 19 0.0622 0.9410 0.9064 0.6270 0.4719 

Symmetrical Uncertainty 16 0.0626 0.9503 0.4093 0.8566 0.4879 
CV 20 0.0621 0.9379 1.0000 0.5339 0.4955 

t-test 15 0.0627 0.9534 0.2880 0.9068 0.4748 

DVE 17 0.0625 0.9472 0.5560 0.7921 0.4882 

LIMMA 22 0.0618 0.9317 0.6366 0.3512 0.5414 

COPA 37 0.0599 0.8851 0.0002 0.0002 0.5420 

GSEH 39 0.0596 0.8789 4.79E-5 3.95E-5 0.5460 

 

Table 8. Comparison results on GSE15484 (cancer vs benign) dataset 

Answer set 1 Gene Count (a) False Positive Rate False Negative Rate p-value P(X >= a) AUC 

Chi-square 53 0.0594 0.9002 0.0005 0.0003 0.5221 

Information Gain 53 0.0594 0.9002 0.0005 0.0003 0.5214 

Gain Ratio 48 0.0601 0.9096 0.0088 0.0050 0.5162 
Relief-A 52 0.0596 0.9021 0.0010 0.0006 0.5159 

Symmetrical Uncertainty 50 0.0598 0.9058 0.0028 0.0018 0.5164 

CV 30 0.0625 0.9435 0.6422 0.7364 0.5016 

t-test 59 0.0586 0.8889 9.49E-6 6.37E-6 0.5376 

DVE 39 0.0613 0.9266 0.2638 0.1520 0.5254 

LIMMA 46 0.0604 0.9134 0.0197 0.0125 0.5506 
COPA 47 0.0602 0.9115 0.0118 0.0080 0.5321 

GSEH 64 0.0580 0.8795 1.92E-7 1.34E-7 0.5639 

Answer set 2 Gene Count (a) False Positive Rate False Negative Rate p-value P(X >= a) AUC 

Chi-square 33 0.0604 0.8975 0.0043 0.0029 0.5229 
Information Gain 34 0.0603 0.8944 0.0020 0.0015 0.5219 

Gain Ratio 29 0.0609 0.9099 0.0439 0.0271 0.5180 

Relief-A 28 0.0611 0.9130 0.0755 0.0434 0.5128 

Symmetrical Uncertainty 32 0.0605 0.9006 0.0089 0.0054 0.5181 

CV 15 0.0627 0.9534 0.2880 0.9068 0.4954 

t-test 36 0.0600 0.8882 0.0005 0.0004 0.5445 
DVE 26 0.0613 0.9193 0.1570 0.1003 0.5308 

LIMMA 28 0.0611 0.9130 0.0755 0.0434 0.5506 

COPA 28 0.0611 0.9130 0.0755 0.0434 0.5256 

GSEH 44 0.0590 0.8634 6.71E-7 4.83E-7 0.5742 
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Table 9. Comparison results on Singh dataset 

Answer set 1 Gene Count (a) False Positive Rate False Negative Rate p-value P(X >= a) AUC 

Chi-square 55 0.0570 0.9461 0.7194 0.6795 0.5199 

Information Gain 62 0.0561 0.9393 0.5644 0.2944 0.5176 

Gain Ratio 70 0.0551 0.9314 0.0839 0.0491 0.5190 

Relief-A 64 0.0558 0.9373 0.3873 0.2055 0.5095 

Symmetrical Uncertainty 68 0.0553 0.9334 0.1496 0.0840 0.5213 

CV 54 0.0571 0.9471 0.6149 0.7300 0.4798 
t-test 63 0.0560 0.9383 0.4713 0.2477 0.5106 

DVE 40 0.0589 0.9608 0.0094 0.9971 0.4779 

LIMMA 62 0.0561 0.9393 0.5644 0.2944 0.4864 

COPA 57 0.0567 0.9442 1.0000 0.5695 0.4979 

GSEH 75 0.0544 0.9265 0.0173 0.0099 0.4994 

Answer set 2 Gene Count (a) False Positive Rate False Negative Rate p-value P(X >= a) AUC 

Chi-square 30 0.0573 0.9518 0.3698 0.8515 0.5303 

Information Gain 35 0.0567 0.9438 1.0000 0.5472 0.5267 

Gain Ratio 43 0.0557 0.9310 0.1767 0.0996 0.5287 

Relief-A 44 0.0556 0.9294 0.1258 0.0731 0.5234 
Symmetrical Uncertainty 38 0.0563 0.9390 0.5903 0.3383 0.5322 

CV 29 0.0574 0.9535 0.2814 0.8912 0.4801 

t-test 36 0.0566 0.9422 0.8575 0.4755 0.5232 

DVE 23 0.0581 0.9631 0.0245 0.9922 0.4636 

LIMMA 41 0.0559 0.9342 0.3219 0.1734 0.4778 

COPA 35 0.0567 0.9438 1.0000 0.5472 0.5041 
GSEH 49 0.0550 0.9213 0.0189 0.0111 0.4942 

 

 

 

Table 10. Comparison results on TCGA_PRAD dataset 

Answer set 1 Gene Count (a) False Positive Rate False Negative Rate p-value P(X >= a) AUC 

Chi-square 54 0.0231 0.9573 0.0001 4.31E-5 0.5629 

Information Gain 54 0.0231 0.9573 0.0001 4.31E-5 0.5630 

Gain Ratio 58 0.0229 0.9542 3.13E-6 2.61E-6 0.5610 

Relief-A 67 0.0225 0.9470 2.18E-9 1.56E-9 0.5758 
Symmetrical Uncertainty 53 0.0232 0.9581 0.0001 0.0001 0.5625 

t-test 52 0.0233 0.9589 0.0002 0.0002 0.5601 

DVE 2 0.0258 0.9984 1.12E-11 1.0000 0.4897 

LIMMA 19 0.0250 0.9850 0.0236 0.9931 0.5020 

COPA 3 0.0258 0.9976 1.67E-10 1.0000 0.4893 

GSEH 144 0.0185 0.8862 2.89E-58 2.89E-58 0.6472 

Answer set 2 Gene Count (a) False Positive Rate False Negative Rate p-value P(X >= a) AUC 

Chi-square 38 0.0233 0.9475 1.08E-5 8.32E-6 0.5767 

Information Gain 34 0.0235 0.9530 0.0003 0.0002 0.5766 

Gain Ratio 39 0.0233 0.9461 3.68E-6 3.43E-6 0.5746 
Relief-A 44 0.0230 0.9392 3.99E-8 2.71E-8 0.5929 

Symmetrical Uncertainty 36 0.0234 0.9503 0.0001 4.49E-5 0.5761 

t-test 33 0.0236 0.9544 0.0005 0.0005 0.5712 

DVE 1 0.0252 0.9986 4.56E-7 1.0000 0.4718 

LIMMA 8 0.0248 0.9890 0.0137 0.9970 0.5059 

COPA 1 0.0252 0.9986 4.56E-7 1.0000 0.4721 
GSEH 82 0.0211 0.8867 4.90E-32 4.90E-32 0.6648 

 

In most of the cases, GSEH found the largest number of prostate cancer-associated genes, showed the lowest p-value 
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among all the gene selection methods, and showed better AUCs than the other methods. Because GSEH is a disease-

associated gene selection/prioritization method, an ability of giving high scores to disease-associated genes is important, 

and the ability can be evaluated by counting disease-associated genes in limited top-ranking genes. The above experiments 

showed that GSEH has a power of distinguishing disease-associated genes from normal genes. Moreover, another goal of 

GSEH is identifying disease-associated genes with a different kind of view from the other methods. GSEH prioritized dif-

ferent genes in the top ranks from the top-ranking genes of the other methods and it is presented in Discussions section. 

 

4 DISCUSSIONS 

GSEH is a filtering strategy of the four computational strategies mentioned in the introduction section, because it employs 

a filter defined by heterogeneous gene expression characteristics. As mentioned in Introduction section, the difference of 

gene expression heterogeneity between two conditions can provide information for finding disease-associated genes. We 

therefore used collaborative filtering to estimate the degree of being “differentially predicted” which indicates the differ-

ence of gene expression heterogeneity. GSEH uses the degree of being differentially predicted under different conditions to 

identify genes relating to the biological process of a disease. 

The “Differential prediction” is the main concept of GSEH. If a data has heterogeneous gene expression characteristics, it is 

difficult to predict expressions. Because collaborative filtering is a method that can predict unfilled information in a rec-

ommendation system, the significant challenge of prediction is indicative of the great differences between the original gene 

expressions and collaboratively filtered gene expressions. If the difference is large, gene expressions from one class are 

poorly predicted, whereas gene expressions from the other class are accurately predicted. In other words, gene expressions 

from one class have heterogeneous gene expression patterns while gene expressions from the other class do not have het-

erogeneous gene expression patterns because we assume that it is difficult to predict expressions with heterogeneous char-

acteristics. 

When we devised the GSEH, we supposed about two cases. First, normal people’s gene expressions of a given gene are 

basically heterogeneous but when a disease affects the gene, the expressions of the gene show consistency. Second, it is the 

opposite case. Originally, gene expressions of a given gene are similar in normal people but when a disease affects, the 

gene expressions become heterogeneous. Therefore, the large prioritization score indicates high possibility to relate with a 

given disease in GSEH and it can be used to determine significance of genes when you consider differential predictability 

between two conditions in gene expression data. The top-ranking genes from GSEH were differentially predicted between 

two classes and we can conclude that differentially predicted genes can provide additional information for discovering 

disease-associated genes. 
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GSEH discovered the largest number of prostate cancer-associated genes in high-ranking positions and showed the lowest 

p-values when compared to other similar methods. Moreover, we investigated prostate cancer-associated genes from the 

20 top-ranking genes prioritized by GSEH. Singh, GSE15484 (high risk vs low risk), and GSE15484 (cancer vs benign) da-

tasets have 5 prostate cancer-associated genes, and TCGA_PRAD dataset has 18 prostate cancer-associated genes among 

the 20 top-ranking genes. PTHLH, SERPINA1, JUN, GPX3, and KLK3 from the Singh dataset, OR51E1, ETV4, NPY, MT2A, 

and ID2 from the GSE15484 (high risk vs low risk) dataset, MSMB, TGM4, KLK11, EGFR, and ACPP from the GSE15484 

(cancer vs benign) dataset, and SEMG1, SEMG2, KLK3, MYH11, TGM4, HSPA1A, ACPP, NPY, FLNA, SERPINA3, SPON2, 

LTF, TAGLN, MUC6, PLA2G2A, MYLK, KLK2, and TFF3 from TCGA_PRAD dataset were related to prostate cancer. We 

manually investigated functions of the prostate cancer-associated genes prioritized by GSEH (Table 11-14). 

 

 

 

 

 

 

 

Table 11. Functions of prostate cancer-associated genes prioritized by GSEH in Singh dataset 

Singh Gene Symbol Rank Gene Functions 

1 PTHLH 7 

- Nuclear localization of PTHLH bestows prostate cancer cell resistance on anoikis, poten-

tially contributing to metastasis of prostate cancer [31]. 

 

- PTHLH encourages prostate cancer cell growth [32]. 

 

- PTHLH has a role in tumorigenesis of prostate cancer; it is a key intermediary for com-

munication and interactions between prostate cancer and the bone microenvironment [33]. 

 

- PTHLH expression engenders the skeletal progression of prostate cancer cells [34]. 

 

- PTHLH has a role in prostate tumor invasion and metastasis by influencing cell adhesion 

to the ECM (Extracellular Matrix) protein via up-regulation of specific integrin subdivi-

sions [35]. 

2 SERPINA1 9 

- Prostate cancer patients showed higher elevation in SERPINA1 serum levels compared to 

healthy controls [36]. 

 

- Men with prostate cancer had significantly higher SERPINA1 concentrations than those 

without prostate cancer [37]. 

3 JUN 10 

- JUN activity in prostate cancer cells mediates EGF-R and PI3K signaling; it is crucial for 

their proliferation [38]. 

 

- Activation of JUN enhances apoptosis in prostate cancer cells [39]. 

 

- JUN plays a vital role in the pathway that links ligand-activated AR to elevated ETV1 

expression, resulting in enhanced expression of matrix metalloproteinases and prostate 

cancer cell invasion [40]. 

4 GPX3 14 

- A novel signaling pathway of GPX3-PIG3 is related to the regulation of cell death in 

prostate cancer [41]. 
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- GPX3 is a novel prostate cancer suppressor gene [42]. 

5 KLK3 16 

- KLK3 may decrease or increase invasive properties of prostate cancer cells [43]. 

 

- Single-nucleotide polymorphisms in KLK3 are related with prostate cancer [44]. 

 

- Germline KLK3 variants could influence the diagnosis of nonaggressive prostate cancer 

by affecting the possibility of biopsy [45]. 

 

- The KLK3/free testosterone ratio may be considered a marker expressing different biolo-

gy groups of prostate cancer patients; it is strongly associated with tumor extension and the 

Gleason sum [46]. 

 

- Polymorphisms in KLK3 genes may be regarded as potential biomarkers for prostate 

cancer [47]. 

 

- KLK3-RP2 is up-regulated in prostate cancer compared to benign prostatic hyperplasia 

tissues [48]. 

 

- The androgen response element of polymorphism on the KLK3 gene is related to prostate 

cancer [49]. 

 

- A novel splice variant of prostate specific antigen/human KLK3 is identified; it can be 

used to distinguish prostate cancer from benign prostate hyperplasia [50]. 

 

- KLK3 gene promoter variation may play a key role in the development of prostate cancer 

and benign prostatic hyperplasia [51]. 

 

- KLK3 has a functional role in the advancement of prostate cancer through their facilita-

tion of tumor cell migration [52]. 

 

- Polymorphism of KLK3 gene promoter may be a significant biomarker for prostate can-

cer risk, especially an early outbreak of prostate cancer [53]. 

 

Table 12. Functions of prostate cancer-associated genes prioritized by GSEH in GSE15484 (high risk vs low risk) dataset 

GSE15484 Gene Symbol Rank Gene Functions 

1 OR51E1 1 

- OR51E1 may be useful as a tissue marker and molecular target for the early detection 

and treatment of human prostate cancers [54]. 

 

- In some cases, expression of OR51E1 is substantially elevated in prostate cancer [55]. 

2 ETV4 5 

- Increased expression of ETV4 is related to tumor aggression in prostate neoplasms [56]. 

 

- TMPRSS2-ETV4 gene fusions may cause an initiating event in prostate cancer develop-

ment [57]. 

3 NPY 8 

- A lower NPY expression level is highly related to the more aggressive clinical behavior 

of prostate cancer [58]. 

 

- Y1 receptor activation by NPY regulates the development of prostate cancer cells [59]. 

4 MT2A 13 

- A strong relation between the rs28366003 genotype and MT2A expression level is found 

in prostate cancer patients [60]. 

 

- High MT2A expression is associated with prostate cancer [61]. 

 

- MT2A may have a role in prostate cancer [62]. 

5 ID2 17 
- ID1 and ID2 proteins manage prostate cancer cell phenotypes and play roles as molecular 

markers of aggressive human prostate cancer [63]. 

 

Table 13. Functions of prostate cancer-associated genes prioritized by GSEH in GSE15484 (cancer vs benign) dataset 

GSE15484 Gene Symbol Rank Gene Functions 

1 MSMB 2 
- A functional polymorphism in MSMB promoter contributes to genetic predisposition to 

prostate cancer [64]. 
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- A SNP in MSMB on chromosome 10q11 is a causal variant for prostate cancer risk [65-

66] 

 

- High MSMB expression is associated with the progression of prostate cancer [67]. 

2 TGM4 5 

- TGM4 plays a pivotal role in interaction between endothelial cells and prostate cancer 

cells [68]. 

 

- TGM4 can be a potential predictor of biochemical recurrence of prostate cancer [69]. 

 

- TGM4 is down-regulated in prostate cancer glands compared to normal glands [70]. 

3 KLK11 6 

- KLK11 may be useful marker for distinguishing prostate cancer and benign samples [71]. 

 

- Down-regulation of KLK11 can be used as prognostic indicators for prostate cancer [72]. 

4 EGFR 8 

- EGFR may have a role in disease relapse and progression to androgen-independence in 

prostate cancer [73]. 

 

- Down-regulation of EGFR plays an important role in pathogenesis of prostate cancer 

[74]. 

5 ACPP 13 

- ACPP regulates prostate cancer cell growth [75]. 

 

- ACPP can be predictive indicator of prostate cancer diagnosis and prognosis [76-77]. 

 

 

 

 

 

 

Table 14. Functions of prostate cancer-associated genes prioritized by GSEH in TCGA_PRAD dataset 

TCGA_PRAD Gene Symbol Rank Gene Functions 

1 SEMG1 1 - Overexpression of SEMG1 and SEMG2 are found in human prostate cancer and they can 

be used to predict prostate cancer progression after radical prostatectomy [78]. 2 SEMG2 2 

3 KLK3 3 - KLK3 is realted with prostate cancer and already described in Table 11. 

4 MYH11 4 
- There is an evidence for a role of somatic MYH11 mutations in formation of prostate 

cancers [79]. 

5 TGM4 5 - TGM4 is associated with prostate cancer and already described in Table 13. 

6 HSPA1A 6 

- HSPA1A is overexpressed in human prostate cancer cells [80] 

 

- Down-regulation of HSPA1A suppresses ERK and NF-kappaB, which may be responsi-

ble for enhanced sensitivity of prostate carcinoma cells [81]. 

7 ACPP 7 - ACPP is related with prostate cancer and already described in Table 13. 

8 NPY 8 - NPY is associated with prostate cancer and already described in Table 12. 

9 FLNA 9 
- FLNA may play important roles as a negative regulator to prostate cancer cell migration 

and invasion [82]. 

10 SERPINA3 10 - SERPINA3 is associated with increased risk of prostate carcinoma [83]. 

11 SPON2 11 
- SPON2 is overexpressed in prostate cancer cell and it is a new diagnostic biomarker for 

prostate cancer [84]. 

12 LTF 12 - Silencing of the LTF may be causally linked to prostate cancer progression [85]. 

13 TAGLN 14 

- Expression of TAGLN is decreased in prostate cancer [86]. 

 

- TAGLN acts as a suppressor to inhibit prostate cancer cell growth [87]. 
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14 MUC6 15 - MUC6 is overexpressed in progression and lymphatic metastasis of prostate cancer [88]. 

15 PLA2G2A 17 

- High level of PLA2G2A may serve as a tumor prognostic biomarker which is capable of 

distinguishing aggressive from indolent prostate cancers [89]. 

 

- PLA2G2A overexpression is associated with prostate development and progression [90-

91]. 

 

- PLA2G2A expression is increased in prostate cancer but decreased in metastatic cancers 

[92]. 

16 MYLK 18 - MYLK is down-regulated by androgens in prostate cancer cells [93]. 

17 KLK2 19 

- KLK2 promotes prostate cancer cell growth [94]. 

 

- Single nucleotide polymorphism in KLK2 is associated with prostate cancer [95]. 

 

- KLK2 enhances proliferation of prostate cancer cells [96]. 

18 TFF3 20 

- TFF3 enhances oncogenic characteristics of prostate cancer cells [97]. 

 

- TFF3 is up-regulated in prostate cancer glands compared to the corresponding normal 

glands [98]. 

 

- Overexpression and promoter hypomethylation of TFF3 is associated with prostate can-

cer [99]. 

 

 

 

 

 

 

The genes prioritized by GSEH are potentially significant to prostate cancer. The 5 genes among the top 20 genes were 

identified as prostate cancer-associated genes in Singh and GSE15484 datasets, and 18 prostate cancer-associated genes 

were discovered among the top 20 genes in TCGA_PRAD dataset. However, this does not indicate that the other genes are 

meaningless. The genes in high-ranking positions have a high possibility of being associated with the prostate cancer and 

are worth researching (Table 15-18). Moreover, GSEH can discover disease-associated genes with different point of view: 

Gene expression heterogeneity. As described in the tables, GSEH provided different genes compared to other methods. 

 

Table 15. Top 20 genes of GSEH and ranks of the other methods of the genes in Singh dataset 

GSEH 

Rank 
Gene symbol CHI Info_G Gain_R RA SU CV t-test DVE Limma COPA 

1. EIF2AK2 4303 4107 3996 4121 4339 5742 2221 8459 6111 644 

2. NDUFB1 472 575 1224 323 888 7014 316 4781 6334 61 

3. GOLGA4 2768 2860 1603 5635 1579 1021 7771 7834 5418 7379 

4. HIST1H1C 525 282 90 2306 192 4394 445 7515 6887 18 

5. SLC5A1 1380 1377 422 457 970 70 5030 1597 2502 6898 

6. CIZ1 649 761 1265 662 1194 8686 2871 5663 7321 2 



1545-5963 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCBB.2016.2618927, IEEE/ACM
Transactions on Computational Biology and Bioinformatics

24 IEEE TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS,  VOL.  #,  NO.  #,  MMMMMMMM  2016 

 

7. PTHLH 664 370 120 4808 231 2088 694 2795 7583 13 

8. PPM1F 7859 7859 7859 1657 7859 1549 4422 3095 4481 6831 

9. SERP1NA1 68 64 44 157 50 1926 125 1911 5600 229 

10. JUN 1012 592 196 4001 393 5618 1723 7769 6237 99 

11. PI3 5 9 8 6 7 8756 5 3349 5623 280 

12. LCE2B 1065 641 163 4605 407 1997 4226 6217 8581 505 

13. EDN3 4233 4288 3948 5139 4244 8617 4228 7274 7593 30 

14. GPX3 94 113 344 28 125 964 25 7697 2810 3543 

15. TSPAN7 527 509 663 471 465 8800 1024 613 7609 8 

16. KLK3 7535 7535 7535 591 7535 78 1625 7403 3647 5585 

17. CLIC1 3266 4515 3144 3172 3232 1069 7023 5959 5544 848 

18. IGKV1OR15-118 658 371 118 303 227 5072 591 7170 4847 8288 

19. ATP6V1E1 6 6 4 31 5 8670 22 4737 6002 153 

20. FABP4 224 242 684 175 323 3920 110 7893 6208 1571 

 

 

 

 

 

 

Table 16. Top 20 genes of GSEH and ranks of the other methods of the genes in GSE15484 (high risk vs low risk) dataset 

GSEH 

Rank 
Gene symbol CHI Info_G Gain_R RA SU CV t-test DVE Limma COPA 

1. OR51E1 7641 7641 7641 2306 7641 979 4929 2264 1284 3564 

2. IL17C 5686 5686 5686 8000 5686 8047 3496 1694 5936 5976 

3. UBE4B 1187 1293 1254 3366 1275 3563 7324 6237 8038 7799 

4. TAF7 139 61 34 2353 38 7011 2683 8047 6908 3868 

5. ETV4 1688 1688 1688 3409 1688 1797 5447 4123 2171 1017 

6. NAA11 5351 5351 5351 2078 5351 7084 1657 3456 5978 6682 

7. RPLP1 2344 2344 2344 5509 2344 3923 4720 7021 5381 643 

8. NPY 7160 7160 7160 7638 7160 5257 7915 1229 1817 6076 

9. RANBP2 1646 1646 1646 5281 1646 1052 7785 3870 7505 3338 

10. DSC2 2393 2393 2393 146 2393 4523 584 6954 3535 7880 

11. PLA1A 2859 2859 2859 7682 2859 6628 6718 5688 1042 891 

12. HLA-DRA 3491 3491 3491 878 3491 3687 2271 6644 4507 6170 

13. MT2A 5965 5965 5965 5183 5965 2894 3365 2844 2097 1633 

14. GGTL4 448 312 77 52 178 6818 295 1541 5225 230 
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15. TMEM178A 1473 1473 1473 882 1473 5287 862 4435 454 4511 

16. MT1X 5403 5403 5403 3384 5403 3874 2432 6775 4365 1923 

17. ID2 4631 4631 4631 3552 4631 2376 5113 1130 7741 7364 

18. MT1H 434 522 458 514 446 4131 445 6972 5681 828 

19. VPS52 5592 5592 5592 8048 5592 6736 4623 4716 6396 90 

20. GDEP 7515 7515 7515 3224 7515 969 6991 973 3877 41 

 

Table 17. Top 20 genes of GSEH and ranks of the other methods of the genes in GSE15484 (cancer vs benign) dataset 

GSEH 

Rank 
Gene symbol CHI Info_G Gain_R RA SU CV t-test DVE Limma COPA 

1. FCGBP 31 47 28 8 24 7802 11 1141 2275 3 

2. MSMB 110 60 247 183 152 69 7682 4921 3823 1065 

3. ORM2 3413 3502 3527 1265 3527 5141 1239 1511 2831 127 

4. ACSM1 5997 5756 6110 4613 6110 7923 3233 6999 4040 145 

5. TGM4 7596 7715 7764 208 7764 2239 246 4764 3999 14 

6. KLK11 2242 2193 2196 7915 2196 2719 6204 4046 5548 11 

7. SERTAD4 1465 1232 1449 2080 1449 216 3460 2261 6593 4256 

8. EGFR 3061 2994 3029 1465 3029 4779 495 6890 4929 408 

9. COL3A1 2017 2095 2084 7467 2084 2658 2895 3246 401 1357 

10. FBXL12 965 959 779 7489 772 7166 7222 3701 5480 16 

11. CYFIP2 4613 4717 4574 1969 4574 6726 6011 6566 7833 1188 

12. ABP1 209 231 254 933 246 2333 141 772 4988 1068 

13. ACPP 7677 7787 7638 758 7638 361 7986 4744 5169 3003 

14. SOBP 157 247 42 535 98 3709 180 2998 1334 5428 

15. IER3 29 48 27 43 25 3792 82 2335 138 681 

16. CACNA1D 254 449 202 1537 288 2035 502 3480 805 4415 

17. KRT5 15 10 33 5 19 7900 4 1089 1613 15 

18. B3GNT5 193 316 190 172 228 6590 138 745 4797 5080 

19. FAM208A 2389 2000 2341 6460 2341 2935 7109 3958 831 436 

20. CENPN 5366 6114 6028 893 6028 2089 430 7144 3883 5789 

 

Table 18. Top 20 genes of GSEH and ranks of the other methods of the genes in TCGA_PRAD dataset 

GSEH 

Rank 
Gene symbol CHI Info_G Gain_R RA SU t-test DVE Limma COPA 

1. SEMG1 3931 4083 4885 9092 4308 2017 4788 17132 4719 

2. SEMG2 6350 6166 5777 11081 5968 2187 4787 17196 4720 

3. KLK3 7580 7591 6894 7737 7355 4680 11355 9166 11405 

4. MYH11 676 732 919 965 802 168 9120 11829 8877 

5. TGM4 19697 19697 19697 6355 19697 11175 2581 18152 2519 

6. HSPA1A 16093 16093 16093 7626 16093 5240 12393 15647 12929 
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7. ACPP 8003 8002 8867 394 8438 4690 18553 12248 20191 

8. NPY 5777 5683 5142 17361 5428 13742 8458 16899 8360 

9. FLNA 1788 1927 2261 2961 1958 528 13999 11780 12217 

10. SERPINA3 18784 18784 18784 13857 18784 12928 4736 17145 4715 

11. SPON2 3162 2426 1418 10619 2075 4381 3361 14259 3466 

12. LTF 16959 16959 16959 8404 16959 12737 10136 16674 9942 

13. ACTG2 1054 1097 1320 3313 1170 1053 18583 13647 20185 

14. TAGLN 1606 1775 2171 5415 1830 1932 2885 13571 2751 

15. MUC6 13036 13012 12021 16023 12485 3250 9173 17530 8988 

16. DES 827 870 703 4842 773 2702 15687 14633 16353 

17. PLA2G2A 5407 5855 7407 16401 6521 9349 7013 16304 6924 

18. MYLK 91 114 102 847 105 27 9091 11613 8897 

19. KLK2 5326 5047 4796 2950 4992 2912 11354 7898 11408 

20. TFF3 3575 3727 4168 14610 3767 8822 2608 16516 43 

 

 

 

 

 

 

 

GSEH can provide insight into gene expression heterogeneity of diseases; nevertheless, it has two limitations. First, be-

cause the method selects disease-associated genes based on gene expression heterogeneity, if the degree of gene expression 

heterogeneity between two conditions is low, the performance may not be good. For this reason, we used prostate cancer 

data for our experiment. Because prostate cancer has highly heterogeneous characteristics [21, 100-101], we expected that 

the degree of gene expression heterogeneity between two conditions in prostate cancer data is high, and it is suitable for an 

experiment that handles gene expression heterogeneity. Second, the calculation of correlation and prediction with collabo-

rative filtering is time-consuming. It may take a long time to create a predicted matrix for data that includes a large num-

ber of samples. Addressing these limitations will comprise our future work on GSEH. 

 

5 CONCLUSION 

Most existing gene selection methods have focused on differentially expressed genes, which can help with classification, 

rather than on biologically meaningful genes. Our focus, on the other hand, is on discovering genes that relate to the bio-
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logical processes of a disease. GSEH is not intended to replace those existing differentially expressed gene selection meth-

ods; rather, it serves to provide additional information for discovering genes that relate to the biological processes of a dis-

ease. The GSEH process is divided into two phases. The first phase involves constructing a predicted gene expression ma-

trix using collaborative filtering. The second phase involves calculating the ranking scores of genes using a comparison 

between a predicted gene expression matrix and the original gene expression matrix. GSEH selects genes by scoring the 

difference of predicted expression levels by assuming that the predicted levels under the two different conditions within 

the same disease are different. The larger the heterogeneity, the more challenging is the prediction task. Therefore, it can be 

estimated that the greater the difference of the predicted expression level, the more closely related to a disease the gene is. 

GSEH discovered the largest number of prostate cancer-associated genes and showed considerably low p-value when 

compared to the other methods. However, GSEH has a limitation in this paper that the results are only from prostate can-

cer datasets. Applying GSEH to another various disease data sets is required to make more significant results. The genes 

prioritized by GSEH have high potential to be related with a disease. Moreover, they can provide a different insight into 

the biological processes of a disease compared to other methods. 
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