
ViST: A Dynamic Index Method for Querying
XML Data by Tree Structures

Haixun Wang 1Sanghyun Park Wei Fan Philip S. Yu

IBM Thomas J. Watson Research Center 1Dept. of Computer Science & Engineering
Hawthorne, NY 10532 POSTECH, Pohang, Korea

{haixun, weifan, psyu}@us.ibm.com sanghyun@postech.ac.kr

ABSTRACT
With the growing importance of XML in data exchange,
much research has been done in providing flexible query fa-
cilities to extract data from structured XML documents.
In this paper, we propose ViST, a novel index structure for
searching XML documents. By representing both XML doc-
uments and XML queries in structure-encoded sequences, we
show that querying XML data is equivalent to finding sub-
sequence matches. Unlike index methods that disassemble
a query into multiple sub-queries, and then join the results
of these sub-queries to provide the final answers, ViST uses
tree structures as the basic unit of query to avoid expensive
join operations. Furthermore, ViST provides a unified in-
dex on both content and structure of the XML documents,
hence it has a performance advantage over methods index-
ing either just content or structure. ViST supports dynamic
index update, and it relies solely on B+Trees without using
any specialized data structures that are not well supported
by DBMSs. Our experiments show that ViST is effective,
scalable, and efficient in supporting structural queries.

1. INTRODUCTION
With the growing importance of XML in data exchange,
much research has been done in providing flexible query
mechanisms to extract data from XML documents [11, 18,
16, 9, 6, 14]. The semi-structured nature of XML data and
the requirements on query flexibility pose unique challenges
to database indexing methods. In this paper, we introduce a
novel index structure, ViST1, which provides solutions to a
wide range of challenges, and offers better performance and
usability than previous approaches in XML indexing.

XML provides a flexible way to define semi-structured data.
For instance, purchase records that contain information of
buyers and sellers can be described by the DTD schema
shown in Figure 1. A sample XML document based on this

1ViST stands for Virtual Suffix Tree

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SIGMOD 2003, June 9-12, 2003, San Diego, CA.
Copyright 2003 ACM 1-58113-634-X/03/06...$5.00.

DTD is shown in Figure 3.

〈!ELEMENT purchases (purchase*)〉
〈!ELEMENT purchase (seller, buyer)〉
〈!ATTRIST seller ID ID location CDATA name CDATA〉
〈!ELEMENT seller (item*)〉
〈!ATTRIST buyer ID ID location CDATA name CDATA〉
〈!ELEMENT item (item*)〉
〈!ATTRIST item name CDATA manufacturer CDATA〉

Figure 1: DTD of purchase records. Sellers supply
items (some contain sub-items) to buyers.

Several query languages, including XPath [7], Quilt [5], XML-
QL [10], and XQuery [4], have been proposed for semi-
structured XML data. The ability to express complex struc-
tural or graphical queries is one of the major focuses in XML
query language design. In Figure 2, we show four sample
queries in graph form. It is well known that querying XML
data is equivalent to finding sub structures of the data graph
that match the query structure.

Many state-of-the-art approaches create indexes on paths
(e.g., “/P/S/I/M” as in Q1) or nodes in DTD trees. Path
indexes can answer simple queries such as Q1 efficiently.
However, queries involving branching structures (Q2, for in-
stance) usually have to be disassembled into multiple sub-
queries, each corresponding to a single path in the graph.
The results of these sub-queries are then combined by ex-
pensive join operations to produce final answers. For the
same reason, these methods are also inefficient in handling
‘*’ or ‘//’ queries (Q3 and Q4, for instance), which too,
correspond to multiple paths. To avoid expensive join oper-
ations, some index methods create special index entries for
frequently occurring multiple-path queries (known as refined
paths) [9, 14]. The potential disadvantages of this approach
include i) we need to monitor query patterns, ii) it is not
a general approach since not every branching query is opti-
mized, and iii) the number of refined paths can have a huge
impact on the size and the maintenance cost of the index.

Moreover, to retrieve semi-structured data efficiently, it is
essential to have index on both structure and content of
the XML data. Nevertheless, many algorithms index on
structure only, or index on structure and content separately,
which means, for instance, attribute values in Q2, Q3, and
Q4 are not used for filtering in the most effective way.

P

S

I

M

Q1: find all manufacturers that

supply items

P

L

B

L

S

boston newyork

Q2: find orders with Boston sell-

ers and NY buyers

P

*

boston

L

Q3: find orders with a Boston

seller or buyer

P

M

intel

I

Q4: find orders that contain Intel

products (items or subitems)

Figure 2: XML Queries in Graph Form

Another important aspect to XML indexing is whether the
index structure supports dynamic data insertion, deletion,
and update, and whether the index depends on specialized
data structures not well-supported by database systems.

S

LI

NN

N

M

I

B

L N

P

panasiadell boston

part#2part#1ibm

P: Purchase
S: Seller
I: Item
L: Location
N: Name
M: Manufacturer
B: Buyer

1

2

3

4

5

LEVEL

newyork

6

M

I

intel

Figure 3: A Single Purchase Record

In this paper, we propose ViST, a novel index structure
that addresses a wide range of challenges in indexing semi-
structured data. Our objective is to provide a general method
so that structural XML queries need not be decomposed into
sub-queries, which means join operations can be avoided.

We transform XML data and XML queries into structure-
encoded sequences. We demonstrate that XML queries, in-
cluding those with branches, or wild-cards (‘*’ and ‘//’), can
be expressed by structure-encoded sequences. We show that
querying XML data is equivalent to finding (non-contiguous)
subsequence matches, and we use a virtual suffix tree to or-
ganize structure-encoded sequences to speed up the match-
ing process. Our index structure consists of two parts, the
D-Ancestor index and the S-Ancestor index. The former
indexes nodes by their ancestor-descendant relationships in
the original XML document tree and the latter indexes nodes
by their ancestor-descendant relationships in the virtual suf-
fix tree. Together, structural XML queries can be answered
in a way similar to substring matching using suffix trees.

Our approach also answers challenges in index structure de-
sign. Unlike many previous methods that index either just
structure or content of the XML data, ViST unifies struc-
tural indexes and value indexes into a single index. In ad-

dition, we propose a technique called dynamic virtual suffix
tree labeling, based on which, structural XML queries, as
well as dynamic index update, can be performed directly on
B+Trees, instead of relying on specialized data structures
such as suffix trees that are not well supported by DBMSs.

Our Contributions
To the best of the authors’ knowledge, the index structure
proposed in this paper is the first approach that provides all
of the following features at the same time.

• Unlike most indexing methods that disassemble a struc-
tured query into multiple sub-queries, and then join
the results of these sub-queries to provide the final an-
swers, our method uses tree structures as the basic unit
of query to avoid expensive join operations.

• Our approach provides a unified index on both the
content and the structure of XML documents, hence
it has a performance advantage over methods indexing
either just content or structure.

• Unlike some XML indexing approaches that rely on
specialized data structures such as the suffix tree, which
is not well-supported for disk-based data, we leverage
the mature disk-based B+Tree index.

• Our index structure supports dynamic data insertion
and deletion.

Paper Organization
In the next section, we introduce structure-encoded sequence,
a sequential representation of XML documents and XML
queries, and show that querying structured XML data is
equivalent to finding subsequence matches. We present our
sequence matching algorithm in Section 3. Section 4 con-
tains experiments that show the effectiveness of our algo-
rithms. In Section 5, we review several state-of-the-art XML
indexing approaches. We conclude our work in Section 6.

2. STRUCTURE-ENCODED SEQUENCES
In this section, we introduce structure-encoded sequences,
a sequential representation of both XML data and XML
queries. We show that querying XML is equivalent to finding
subsequence matches.

The purpose of modeling XML queries through sequence
matching is to avoid as many unnecessary join operations
as possible in query processing. That is, we use structure-
encoded sequences, instead of nodes or paths, as the ba-
sic unit of query. Through sequence matching, we match
structured queries against structured data as a whole, with-
out breaking down the queries into sub queries of paths or
nodes and relying on join operations to combine their re-
sults. Many XML databases, such as DBLP [15] and the
Internet movie database IMDB [22], contain a large set of
records of the same structure. Other XML databases may
not be as homogeneous. A synthetic XMARK [23] dataset
consists of one (huge) record. However, each sub structure in
XMARK’s schema, items, closed auction, open auction,
person, etc, contains a large number of instances in the
database and justifies to have an index of its own. Our
sequence matching approach ensures that queries confined
within the same structure are matched as a whole.

Mapping Data and Queries to Structure-Encoded Se-
quences
Consider the XML purchase record shown in Figure 3. We
use capital letters to represent names of elements/attributes,
and we use a hash function, h(), to encode attribute values
into integers. Suppose, for instance, v1 = h(“dell”) and
v2 = h(“ibm”). We then use v1 and v2 to represent “dell”
and “ibm” respectively.

We represent an XML document by the preorder sequence
of its tree structure. For the purchase record example, its
preorder sequence is shown in Table 1.

PSNv1IMv2Nv3IMv4INv5Lv6BLv7Nv8

Table 1: Preorder sequence of the XML purchase
record example (Figure 3)

Since isomorphic trees may produce different preorder se-
quences, we enforce an order among sibling nodes. The DTD
schema embodies a linear order of all elements/attributes de-
fined therein. If the DTD is not available, we simply use the
lexicographical order of the names of the elements/attributes.
For example, under lexicographical order, the Buyer node
will precede the Seller node under Purchase. For mul-
tiple occurring child nodes (such as the Item nodes under
Seller), we order them arbitrarily. As we shall see later,
branching queries require special handling when multiple oc-
curring child nodes are involved.

To reconstruct trees from preorder sequences, extra infor-
mation is needed. Our structure-encoded sequence, defined
below, is a two dimensional sequence, where the second di-
mension preserves the structure of the data.

Definition 1. Structure-Encoded Sequence
A Structure-Encoded Sequence, derived from a prefix traver-
sal of a semi-structured XML document, is a sequence of
(symbol, prefix) pairs:

D = (a1, p1), (a2, p2), · · · , (an, pn)

where ai represents a node in the XML document tree, (of
which a1, · · · , an is the preorder sequence), and pi is the path
from the root node to node ai.

Based on the definition, the XML purchase record (Figure 3)
can be converted to the structure-encoded sequence in Fig-
ure 4. The prefixes in the sequential representation contain
much redundant information; however, as we shall see, since
we do not store duplicate (symbol, prefix) pairs in the index
and that the prefix can be encoded easily, it will not create
problems in index size or storage.

D =

(P, ε), (S, P), (N, PS), (v1, PSN), (I, PS), (M, PSI),

(v2, PSIM), (N, PSI), (v3, PSIN), (I, PSI), (M, PSII),

(v4, PSIIM), (I, PS), (N, PSI), (v5, PSIN), (L, PS),

(v6, PSL), (B,P), (L, PB), (v7, PBL), (N, PB), (v8, PBN)

Figure 4: The structure-encoded sequence of the
purchase record document (Figure 3). The un-
derlined non-contiguous subsequence of D matches
query Q2 (Table 2).

In the same spirit, we convert XML queries to structure-
encoded sequences. The queries in Figure 2 can be trans-
formed to the structure-encoded sequences in Table 2. The
following rules are observed in the conversion:

• Just like converting XML data, we use preorder se-
quences to represent queries. (Example: Q1, Q2)

• Wild-card nodes (‘*’ and ‘//’) are discarded. However,
the prefix paths of their sub nodes will contain a ‘*’ or
‘//’ symbol as a place holder. As we shall see, ‘*’ and
‘//’ are handled as range queries by ViST in sequence
matching. (Example: Q3, Q4)

Querying XML through Structure-Encoded Sequence
Matching
The purpose of introducing structure-encoded sequences is
to model XML queries through sequence matching. In other
words, querying XML is equivalent to finding (non-contiguous)
subsequence matches. We show this by queries Q1, · · · , Q4

(Table 2).

The structure-encoded sequence of Q1 is a subsequence of D,
and we can see Q1 is a sub tree of the XML purchase record
that D represents. The sequence of Q2 is a non-contiguous
subsequence of D, and again, Q2 is a sub tree of the XML
purchase record. The same can be said for query Q3 and
Q4, where prefix paths contain wild-cards ‘*’ and ‘//’ — if
we simply match ‘*’ with any single symbol in the path, and
‘//’ with any portion of the path.

The obvious benefits of modeling XML queries through se-
quence matching is that structural queries can be processed
as a whole instead of being broken down to smaller query
units (paths or nodes of XML document trees), as combin-
ing the results of the sub queries by join operations is often
expensive. In other words, we use structures as the basic
unit of query.

Most structural XML queries can be performed through
direct subsequence matching. The only exception occurs

Path Expression Structure-Encoded Sequence
Q1 : /Purchase/Seller/Item/Manufacturer (P, ε)(S,P)(I, PS)(M, PSI)
Q2 : /Purchase[Seller[Loc = v5]]/Buyer[Loc = v7] (P, ε)(S,P)(L, PS)(v5, PSL)(B, P)(L,PB)(v7, PBL)
Q3 : /Purchase/∗[Loc = v5] (P, ε)(L, P∗)(v5, P ∗L)
Q4 : /Purchase//Item[Manufacturer = v3] (P, ε)(I, P//)(M, P//I)(v3, P//IM)

Table 2: XML Queries in Path Expression and Sequence Form

when a branch has multiple identical child nodes. For in-
stance, in Q5 = /A[B/C]/B/D, the two nodes under the
branch are the same: B. In this case, the tree isomor-
phism problem can not be avoided by enforcing sibling or-
ders, since the two nodes are identical. As a result, the
preorder sequences of XML data trees that contain such a
branch can have two possible forms. In order to find all
matches, we convert Q5 to two different sequences, namely,
(A, ε)(B, A)(C,AB)(B,A)(D, AB) and (A, ε)(B, A)(D, AB)
(B, A)(C,AB). We find matches for these two sequences
separately and union their results. On the other hand, we
may find false matches if the indexed documents contain
branches with identical child nodes. Then, we ask multi-
ple queries and compute set difference on their results. If,
in the unlikely case, the query contains a large number of
same child nodes under a branch, we can choose to disas-
semble the tree at the branch into multiple trees, and use
join operations to combine their results. For instance, Q5

can be disassembled into two trees: (A, ε)(B, A)(C,AB) and
(A, ε)(B, A)(D, AB)2.

After both XML data and XML queries are converted to
structure-encoded sequences, it is straightforward to devise
a brute force algorithm to perform (non-contiguous) sequence
matching. The rest of the paper focuses on building a dy-
namic index structure so that such matches can be found
efficiently.

3. THE VIST APPROACH
We present ViST in three stages. The näıve algorithm,
based entirely on suffix trees, requires traversal of a large
portion of the tree structure for non-contiguous subsequence
matching. We then present RIST, which improves the näıve
algorithm by using B+Trees to index suffix tree nodes. Fi-
nally, we present ViST, an index structure having the same
functionality but relying exclusively on B+Trees.

3.1 Desiderata
The desiderata of an XML indexing method include:

1. The index method should support structural queries
directly. With structure-encoded sequences, this re-
quirement is equivalent to having efficient support for
(non-contiguous) subsequence matching.

2. Instead of relying on specialized data structures such
as suffix trees, the index method should leverage well-
supported database indexing techniques such as B+Trees.

3. The index structure should allow dynamic data inser-
tion, deletion, etc.

2Q5 is a special case where each split tree is a single path.

3.2 A Naive Algorithm Based on Suffix Trees
Much research has been done in the area of subsequence
matching [12]. The most widely used index structure for
substring matching is the suffix tree [17], which embodies a
compact index to all the distinct, contiguous substrings of a
given string.

Doc1 : (P, ε)(S, P)(N, PS)(v1, PSN)(L, PS)(v2, PSL)

Doc2 : (P, ε)(B, P)(L, PB)(v2, PBL)

Q1 : (P, ε)(B, P)(L, PB)(v2, PBL)

Q2 : (P, ε)(L, P∗)(v2, P ∗L)

XML docs and queries in structure-encoded sequences

 P,e
<1,8>

 S,P

N,PS

v1,PSN
 <4,2>

L,PS
<5,1>

v2,PSL
 <6,0>

B,P
<7,2>

L,PB
<8,1>

v2,PBL
<9,0>

<2,4>

<3,3>

1,...

2,...

List of DocIDs of XML Documents
whose insertion ends up at this node

A tree structure for Doc1 and Doc2

Figure 5: Suffix-tree-like structure for structure-
encoded sequences (Labels 〈., .〉 are described in Sec-
tion 3.3)

Figure 5 shows an example of using a suffix-tree-like struc-
ture to index structure-encoded sequences for non-contiguous
matching. We insert two sequences, Doc1 and Doc2, into the
suffix tree. Originally, the elements in the sequences rep-
resent nodes in the XML document trees, from which the
sequences are derived. Now, they also represent nodes in
the suffix tree. Since the nodes are involved in two different
trees, two kinds of ancestor-descendant relationships among
the sequence elements arise: i) the ancestor-descendant re-
lationships of the nodes that they represent in the original
XML document tree, and ii) the ancestor-descendant rela-
tionships of the nodes that they represent in the suffix tree.
We call the 1st relationship the D-Ancestorship, and say,
for instance, element (S, P) is a D-ancestor of (L, PS). We
call the 2nd relationship the S-Ancestorship, and say, for
instance, element (v1, PSN) is an S-Ancestor of (L, PS).

Input: Q = q1, · · · , qk, a query sequence
S, a suffix tree for a set of sequences

Output: all occurrences of Q in S

/* Search begins at the root of the suffix tree */
NaiveSearch(S→root, 1);

Function NaiveSearch(n, i)
if i ≤ k then

for each node c that is a descendent of node n do
/* n is an S-Ancestor of c */
if c matches qi then

/* n is a D-Ancestor of c */
NaiveSearch(c, i + 1);

end
end

else
Output all document IDs attached to the nodes under
node n;

end

Algorithm 1: NaiveSearch: A näıve algorithm based on
suffix trees.

Algorithm 1 presents a näıve method for non-contiguous
subsequence matching. Suppose node x is one of the nodes
matching q1, · · · , qi−1. To match the next element qi, we
check all the nodes under x, which are the nodes satisfy-
ing the S-Ancestorship. Among them, we find those that
match qi’s (Symbol, Prefix) pair, which are the nodes satis-
fying the D-Ancestorship, as Prefix encodes D-Ancestorship
in the XML document tree. For example, to match Q2, we
start with the root node, which matches the first element of
Q2, (P, ε). Then, we search under the root for all nodes that
match (L, P∗), which yields (L, PS) and (L, PB). Finally,
we search for (v2, PSL) (wild-card ‘*’ in the query is instan-
tiated to ‘S’ by the previous match) under the node labeled
(L, PS), and (v2, PBL) under the node labeled (L, PB).

In essence, Algorithm 1 searches nodes first by S-Ancestorship
(searching under a suffix tree node), and then D-Ancestorship
(matching nodes by symbols and prefixes). Algorithm 1 sup-
ports structural query, however, there are several difficulties
in using suffix tree to index structure-encoded sequences.
First, searching for nodes satisfying both S-Ancestorship
and D-Ancestorship is extremely costly since we need to
traverse a large portion of the subtree for each match. Sec-
ond, suffix trees are main memory structures that are seldom
used for disk resident data [9], and most commercial DBMSs
do not have support for such structures.

3.3 RIST: Indexing by Ancestor-Descendent
Relationships

RIST3 improves the näıve algorithm by eliminating costly
suffix tree traversal. With RIST, when we reach node X
after matching a prefix of the query, we can ‘jump’ directly
to those nodes Y to which X is both a D-Ancestor and
an S-Ancestor. Thus, we no longer need to search among
the descendents of X to find such Y s one by one. More
specifically, RIST is designed as follows.

3RIST stands for Relationships Indexed Suffix Tree

1. We index nodes in the suffix tree by their (Symbol,
Prefix) pairs. This is realized by a B+Tree. It en-
ables us to search nodes by (Symbol, Prefix), that
is, by D-Ancestorship, since Prefix encodes ancestor-
descendant relationships in the XML document tree.
We call this B+Tree the D-Ancestorship B+Tree.

2. Among all nodes satisfying D-Ancestorship, we are in-
terested in those satisfying S-Ancestorship as well. We
create labels for suffix tree nodes so that we can tell
S-Ancestorship between two nodes by their labels. We
use B+Trees to index nodes by labels. We call such
B+Trees S-Ancestorship B+Trees.

Index Construction
We determine the D-Ancestorship between two elements by
checking their prefixes, however, to determine S-Ancestorship
between two elements requires additional information. We
label each suffix tree node x by a pair 〈nx, sizex〉, where
nx is the prefix traversal order of x in the suffix tree, and
sizex is the total number of descendants of x in the suffix
tree. Labeling can be accomplished by making a depth-first
traversal of the suffix tree. An example of such labeling is
shown in Figure 5. With the labeling, the S-Ancestorship
between any two nodes can be decided easily: if x and y are
labeled 〈nx, sizex〉 and 〈ny, sizey〉 respectively, node x is an
S-Ancestor of node y iff ny ∈ (nx, nx + sizex].

To construct the B+Trees, we first insert all suffix tree nodes
into the D-Ancestorship B+Tree using their (Symbol, Pre-
fix) as keys. For all nodes x inserted with the same (Symbol,
Prefix), we index them by an S-Ancestorship B+Tree, us-
ing the nx values of their labels as keys.

In addition, we also build a DocId B+Tree, which stores
for each node x (using nx as key), the document IDs of
those XML sequences that end up at node x when they are
inserted into the suffix tree.

<100,1000>

D-Ancestor B+Tree S-Ancestor B+Trees DocId B+Tree

<105,200>

<0,99999>

1,2,10

L,PS

P,e

B,P

S,P

v1,PSN

n=105

<102,500>

.

.

.

.

.

.

100

Figure 6: The RIST index structure

Figure 6 shows the index structure of RIST. In summary,
the construction of the index structure takes three steps: i)
adding all structure-encoded sequences into a suffix tree; ii)
labeling the suffix tree by making a preorder traversal; and
iii) for each node (Symbol, Prefix) labeled 〈n, size〉, inserting
it to the D-Ancestor B+Tree using (Symbol, Prefix) as the
key, and then the S-Ancestor B+Tree using n as the key.

Subsequence Matching
Suppose node x, labeled with 〈nx, sizex〉, is one of the nodes
matching a query prefix q1, · · · , qi−1. To match the next
element qi in the query, we consult the D-Ancestor B+Tree

using qi as a key. The D-Ancestor B+Tree returns the root
of an S-Ancestor B+Tree. We then issue a range query
nx < n ≤ nx + sizex on the S-Ancestor B+Tree to find the
descendants of x immediately. For each descendant, we use
the same process to match symbol qi+1, until we reach the
last element of the query.

If node y is one of the nodes that matches the last element
in the query, then the document IDs associated with y or
any descendant node of y are answers to the query. Based
on y’s label, say 〈ny, sizey〉, we know y’s descendants are
in the range of (ny, ny + sizey]. Thus, we perform a range
query [ny, ny + sizey] on the DocId B+Tree to retrieve all
the document IDs for y and y’s descendants.

Algorithm 2 formalizes the querying process.

Input: Q = q1, · · · , qk, a query sequence
D-Ancestor B+Tree, index of (symbol,prefix) pairs
S-Ancestor B+Trees, index of 〈n, size〉 labels
DocId B+Tree, mapping between the n values in
node labels and document IDs

Output: all occurrences of Q in the XML data

Search(〈0, size〉, 1); /* 〈0, size〉 is the label of the
root node of the suffix tree */

Function Search(〈n, size〉, i)
if i ≤ |Q| then

T ← retrieve, from the D-Ancestor B+Tree, the
S-Ancestor B+Tree that represents qi;
N ← retrieve from T , the S-Ancestor B+Tree, all nodes
with range inside (n, n + size];
for each node c ∈ N do

Assume c is labeled 〈n′, size′〉;
Search(〈n′, size′〉, i + 1);

end
else

Perform a range query [n, n+size) on the DocId B+Tree

to output all document IDs in that range;

end

Algorithm 2: Search: non-contiguous subsequence match-
ing using B+Tree

Handling Wild Cards ‘*’ and ‘//’
If an element in the query sequence contains wild-card ‘*’,
more than one S-Ancestor B+Trees might match the ele-
ment. Let Q = (P, ε)(L, P∗)(v2, P ∗L). To match (L, P∗),
we issue a range query to the D-Ancestor B+Tree (the key
of the D-Ancestor B+Tree is ordered first by the Symbol,
then by the length of the Prefix, and lastly by the content of
the Prefix). The search then continues on each S-Ancestor

B+Tree returned by the range query. Note that we only
need to handle (L, P∗), or elements whose prefixes end with
‘*’, since the matching of (L, P∗) will instantiate the ‘*’ in
(v2, P∗L) to a concrete symbol, which means (v2, P∗L) is not
considered as a wild-card query. Queries with wild-card ‘//’

are handled as a series of ‘*’ queries. Thus, the index sup-
ports wild cards ‘*’ and ‘//’ appearing both in the beginning
and in the middle of a query sequence.

In summary, unlike the näıve algorithm, RIST does not use
suffix trees for subsequence matching (Algorithm 2). From
any node, instead of searching the entire subtree under the
node, we can ‘jump’ to the sub nodes that match the next
element in the query right away. Thus, RIST supports non-
contiguous subsequence matching efficiently. In comparison
with many other indexing approaches that break a query
down to pieces and then join the results, RIST has the ad-
vantage of querying tree structures as a whole.

3.4 ViST: The Virtual Suffix Tree
RIST uses a static scheme to label suffix tree nodes, which
prevents it from supporting dynamic insertions, since for
any node x labeled 〈n, size〉, late insertions can change the
number of nodes that appear before x (in the prefix order)
as well as the size of the subtree rooted at x, which means
neither n nor size can be fixed.

The sole purpose of the suffix tree is to provide a labeling
mechanism to encode S-Ancestorships. Suppose a node x
is created for element di during the insertion of sequence
d1, · · · , di, · · · , dk. If we can estimate i) how many different
elements will possibly follow di in future insertions, and ii)
the occurrence probability of each of these elements, then
we can label x’s child nodes right away, instead of waiting
until all sequences are inserted. It also means i) the suf-
fix tree itself is no longer needed, because its sole purpose
of providing a labeling mechanism can be accomplished on
the fly; and ii) we can support dynamic data insertion and
deletion.

ViST uses a dynamic labeling method to assign labels to
suffix tree nodes. Once assigned, the labels are fixed and
will not be affected by subsequent data insertion or deletion.

3.4.1 Dynamic Virtual Suffix Tree Labeling
We present a dynamic method for labeling suffix tree nodes
without building the suffix tree. The method relies on rough
estimations of the number of attribute values, and other
semantic/statistical information of the XML data. To the
authors’ knowledge, the only dynamic labeling scheme avail-
able was recently proposed by Cohen et al. [8] to label XML
document trees. Our dynamic scheme is designed to la-
bel suffix trees built for structure-encoded sequences derived
from XML document trees.

Top-Down Scope Allocation
A tree structure defines nested scopes: the scope of a child
node is a sub scope of its parent node, and the root node has
the maximum scope which covers the scope of each node.
Initially, the suffix tree contains a single node (root), and
we let it cover the entire scope, [0, Max), where Max is
the maximum value that the machine can represent under
certain precision4.

4Max = 2128 − 1 if we use 8 bytes to represent an integer.
Alternatively, we can use 16 bytes for a Max as large as
2256 − 1.

Semantic and Statistical Clues
Semantic and statistical clues of structured XML data can
often assist sub scope allocation. Figure 7 shows a sam-
ple XML schema. We use p(u|x) to denote, in an XML
document, the probability that node u occurs given node x
occurs. For a multiple occurring node v, p(v|x) denotes the
probability that at least one v occurs given x occurs in an
XML document.

x y z

u v w

d

*

p(u|x)

Figure 7: A Simple XML Schema

If x is the parent of u, usually it is not difficult to derive or
estimate, from the semantics of the XML structure or the
statistics of a sample dataset, the probability p(u|x). For
instance, if each Buyer has a name, then p(Name|Buyer) =
1. If we know that roughly 10% of the items contain at least
a sub-item, then p(SubItem|Item) = 0.1.

We start with two assumptions: i) we know probability
p(u|x) for all u, where x is the parent of u; and ii) in XML
document trees, sibling nodes occur independently of each
other. We will see how assumption ii) can be relaxed. If
node x appears in an XML document based on the schema
in Figure 7, then each of the following symbols can appear
immediately after x in the sequence derived from the doc-
ument: u, v, w, y, z, and ε (empty, x is the last element).
These symbols form the follow set of x.

Definition 2. Follow Set
Given a node x in an XML scheme, we define the follow
set of x as a list, i.e., follow(x) = y1, · · · , yk, where yi

satisfies the following condition: x ≺ yi ≺ yi+1 (according
to prefix traversal order) and the parent of yi is either x or
an ancestor node of x.

It is straightforward to prove that only symbols in x’s follow
set can appear immediately after x. Suppose follow(x) =
y1, · · · , yk, based on the assumption that sub nodes occur
independently, we have:

p(yi|x) = p(yi|d), where d is the parent of yi (1)

Eq(1) is trivial if d = x. If d 6= x, then based on the defini-
tion of the follow set, d must be an ancestor of x, so we have
p(yi|x) = p(yi|x, d). Since x and yi are in different branches
under d, according to our assumption, they occur indepen-
dently of each other, which means p(yi|x, d) = p(yi|d).

Let follow(x) = y1, · · · , yk. The probability that x is fol-
lowed immediately by y1 is p(y1|x), by y2 is (1−p(y1|x))p(y2|x).

The probability that x is followed immediately by yi is:

Px(yi) = p(yi|x)

i−1�
k=1

(1− p(yk|x)) (2)

We allocate subscopes for the child nodes in the suffix tree
according to the probability. More formally, if x’s scope is
[l, r), the size of the subscope assigned to yi, the ith symbol
in x’s follow set, is:

si = (r − l − 1)Px(yi)/C (3)

where C = �
y∈follow(x)−{ε}

Px(y) is a normalization factor

(we do not allocate any scope to ε).

In other words, we should assign a subscope [li, ri) ⊂ [l, r)
to yi, where:

li = l + 1 + (r − l − 1)
i�

j=1

Px(yj) (4)

ri = li + si

In the following situations, the follow set and Eq(2) need to
be adjusted.

• A same node can occur multiple times under its par-
ent node. Let follow(x) = y1, · · · , yk. If x occurs
multiple times under its parent, then x also appears in
follow(x), i.e., follow(x) = y1, · · · , x, · · · , yk, where
the symbols before x are the descendants of x. Let
the probability that an XML document contains n oc-
currences of x under d is pn(x|d), then the probability
that the (n-1)-th x is followed immediately by the n-th

x is pn(x|d) � i−1
k=1(1− p(yk|x)).

• Nodes do not occur independently. Eq(2) is derived
based on the assumption that nodes occur indepen-
dently. However, this may not be true. Suppose for in-
stance, in Figure 7, either u or v must appear under x,
and p(u|x) = p(v|x) = .8. We have follow(x) = u, v,
since if either u and v must occur, there is no pos-
sibility that any of w,y,z,ε can immediately follow x.
Thus, we have,

Px(u) = p(u|x) = .8

Px(v) = (1− p(u|x))p(v|¬u, x) = .2 × 1 = .2

Dynamic Scope Allocation without Clues
Assume we do not have any statistical information of the
data, or any semantic knowledge about the schema, and all
that we can rely on is a rough estimation of the number
of different elements that follow a given element. The best
we can do is to assume each of these elements occurs at
roughly the same rate. This situation usually corresponds
to attributes values. For instance, in a certain dataset, we
roughly estimate the number of different values for attribute
CountryOfBirth to be 100.

Suppose node x is assigned a scope of [l, r). Node x itself
will then take l as its ID, and the remaining scope [l+1, r) is
available for x’s child nodes. Assume the expected number

of child nodes of x is λ. Without the knowledge of the
occurrence rate of each child node, we allocate 1

λ
of the

remaining scope to x’s first inserted child, which will have a
scope of size (r − l − 1)/λ. We allocate 1

λ
of the remaining

scope to x’s second inserted child, which will have a scope

of size
(r−l−1)− r−l−1

λ

λ
= (r − l − 1)(λ − 1)/λ2. The third

inserted child will use a scope of size (r− l− 1)(λ− 1)2/λ3,
and so forth.

parent range
 <n, size>

Child 1 Child 2 Child 3

used

<n+1,size/2> <n+1+size/2,size/4> <n+1+3*size/4,size/8>

Figure 8: Dynamic Scope Allocation with Parame-
ter λ = 2

Figure 8 demonstrates an example of dynamic range alloca-
tion with parameter λ = 2. It shows that the kth child is
allocated a range that is 1/2k of the parent range in size.
As another example, assuming the expected number of sub
nodes of node y is 100, then the ranges of those child nodes
that are inserted among the first 5 occupy 1%, .99%, .98%,
.97%, .96% of the parent range respectively. Apparently,
the allocation method has a bias that favors nodes inserted
earlier.

More formally, according to the above procedure, for a given
node x with a range of [l, r), the size of the subrange assigned

to its kth child is sk =
(r−l−1)− � k−1

i=1 si

λ
. It is easy to prove

that

sk = (r − l − 1)(λ− 1)k−1/λk (5)

In other words, we should assign a subrange [lk, rk) ⊂ [l, r)
to the kth child of node x, where:

lk = l + 1 + (r − l − 1)(1 − (λ− 1)k−1/λk−1) (6)

rk = lk + sk

Based on the above discussion, we introduce the following
definition of dynamic scope.

Definition 3. Dynamic Scope of a Suffix Tree Node
The dynamic scope of a node is a triple 〈n, size, k〉, where k
is the number of subscopes allocated inside the current scope.
Let the dynamic scopes of x and y be sx = 〈nx, sizex, kx〉 and
sy = 〈ny, sizey, ky〉 respectively. Node y is a descendant of
x if sy ⊂ sx, i.e., [ny, ny + sizey) ⊂ [nx, nx + sizex).

Scope Underflow
Let T = t1, · · · , tk be a sequence. Each ti corresponds to a
node in the suffix tree. Assume the size of the dynamically
allocated scopes decreases on average by a factor of γ every
time we descend from a parent node to a child node. As
a result, the size of ti’s scope comes to Max/γi−1, where
Max is the size of the root node’s scope. Apparently, for

a large enough i, Max/γi−1 → 0. This problem is called
scope underflow.

As we have mentioned, XML databases such as DBLP [15]
and IMDB [22] are composed of records of small structures.
For databases with large structures, such as XMARK [23],
we break down the structure into small sub structures, and
create index for each of them. Thus, we limit the average
length of the derived sequences.

If scope underflow still occurs for a given sequence T =
t1, · · · , tk at ti, we allocate a subscope of size k− i + 1 from
node ti−1, and label each element ti, . . . , tk sequentially. If
node ti−1 can not spare a subscope of size k− i+1, we allo-
cate a subscope of size k− i+2 from node ti−2, and so forth.
Intuitively, we borrow scopes from the parent nodes to solve
the scope underflow problems for the descendent nodes. In
order to do this, we preserve certain amount of scope in each
node for this unexpected situation, so that it does not in-
terfere with the dynamic labeling process prescribed by Eq
(3)(4)(5)(6). Using this method, the involved nodes are la-
beled sequentially (each node is allocated a scope for only
one child), and they can not be shared with other sequences,
but they are still properly indexed for matching.

3.4.2 The Algorithms
In this section, we present the dynamic labeling algorithm
and the index construction algorithm of ViST. ViST uses the
same sequence matching algorithm as RIST (Algorithm2).

Algorithm 3 outlines the top-down dynamic range allocation
method described above. The labeling is based on a virtual
suffix tree, which means it is not materialized.

Input: p: parent scope
e: symbol for which a subscope is to be created

Output: s, a subscope inside the parent scope p
p, updated parent scope

Assume p = 〈n, size, k〉;
if semantical/statistical clues for e is available then

Assume e is the ith symbol in the follow set of e’s parent
node;
s← 〈li, si, 0〉; /* li and si are defined in Eq(4)

and Eq(3) respectively */

else
s← 〈lk, sk, 0〉; /* lk and sk are defined in Eq(6)

and Eq(5) respectively */

end
p← 〈n, size, k + 1〉;
return s;

Algorithm 3: subScope(parent, e): create a sub scope
within the parent scope for e

We use an example to demonstrate the process of insert-
ing a structure-encoded sequence into the index structure.
Suppose, before the insertion, the index structure already
contains the following sequence:

Doc1 = (P, ε)(S, P)(N,PS)(v1, PSN)(L, PS)(v2, PSL)

The sequence to be inserted is

Doc2 = (P, ε)(S, P)(L, PS)(v2, PSL)

The index before the insertion of Doc2 is shown in Fig-
ure 9(a). For presentation simplicity, we make two assump-
tions: i) Max = 20480, that is, the root node covers a
scope of [0, 20480); and ii) there is no semantic/statistical
clues available and the top-down dynamic scope allocation
method uses a fixed parameter λ = 2 for all nodes.

The insertion process is much like that of inserting a se-
quence into a suffix tree – we follow the branches, and when
there is no branch to follow, we create one. We start with
node (P, ε), and then (S, P), which has scope 〈1, 5120, 1〉.
Next, we search in the S-Ancestor B+Tree of (L, PS) for all
entries that are within the scope of [2, 5120). The only entry
there, 〈4, 640, 1〉, is apparently not an immediate child5 of
〈1, 5120, 1〉. As a result, we insert a new entry 〈2561, 1280, 1〉,
the 2nd child of (S, P), in the S-Ancestor B+Tree of (L, PS).
The scope for the (S, P) node is updated to 〈1, 5120, 2〉 as
it has a new child now. Similarly, when we reach (v2, PSL),
we insert a new entry 〈2562, 640, 0〉. Finally, we insert key
2562 into the DocId B+Tree for Doc2. The resulting index
is shown in Figure 9(b).

<4,640,1>

D-Ancestor B+Tree S-Ancestor B+Trees DocId B+Tree

<1,5120,1>

<0,10240,1>

n=
5 1

<5,320,0>

P,
e

L
,P

S
S,

P
v1

,P
SN

v2
,P

SL
N

,P
S

.

.

.

.

.

.

<2,2560,1>

<3,1280,1>

(a) Index containing Doc1

<4,640,1>

D-Ancestor B+Tree S-Ancestor B+Trees DocId B+Tree

<1,5120,2>

<0,10240,1>

n=
5 1

<5,320,0>

P,
e

L
,P

S
S,

P
v1

,P
SN

v2
,P

SL
N

,P
S .

.

.

.

.

.

<2561,1280,1>

<2562,640,0>

n=
25

62

2

(b) Changes caused by the insertion of Doc2

Figure 9: Index structure before and after insertion

Algorithm 4 details the process of inserting an XML se-
quence into the index structure.

5We can tell the immediate parent-child relationship by
Eq (4) and Eq (6).

Input: T : a structure-encoded sequence id: ID of the
XML document represented by T

Output: updated index file F

Assume T = (a1, l1), · · · , (ai, li), · · · , (ak, lk);
s ← 〈0, Max, k〉; /* s is the scope of the root node of

the virtual suffix tree */
i← 1;
while i ≤ k do

Search key (ai, li) in the D-Ancestor B+Tree;
if found then

e← the S-Ancestor B+Tree associated with (ai, li);

else
e← new S-Ancestor B+Tree;
Insert e into the D-Ancestor B+Tree with key
(ai, li);

end
Search in e for scope r such that r is an immediate child
scope of s ;
if not found then

r← 〈n, size, k〉 ← subScope(s, ai) ;
Insert (n, size) into S-Ancestor B+Tree e with n as
key;

end
s← r;
i← i + 1;

end
Assume s = 〈n, size, k〉;
Insert (n, id) into the DocId B+Tree;

Algorithm 4: Index an XML document

4. EXPERIMENTS
We implemented RIST and ViST in C++ for XML indexing.
We also implemented a path index method similar to Index
Fabric [9], and a node index method similar to XISS [16] for
comparison purposes. The implementation uses the B+Tree
API provided by the Berkeley DB library [20]. We carry
out our experiments on a Linux machine with a 662 MHz
Pentium III CPU and 256 MB main memory.

Data Sets
For our experiments, we use public XML databases DBLP [15],
the XML benchmark database XMARK [23], and we also
generate our own synthetic datasets.

• DBLP. The popular computer science bibliography
database is widely used in benchmarking XML index
methods. In the version we downloaded, there are
289,627 records, 2,934,188 elements, and 364,348 at-
tributes, totaling 301,318 KBytes of data. Each record
of DBLP corresponds to a publication, with a sim-
ple tree structure of maximum depth 6. The average
length of the structure-encoded sequences derived from
the DBLP records is around 31.

• Xmark. Unlike DBLP, an XMARK dataset is a single
record with a very large and complicated tree struc-
ture. Since it is not meaningful to represent the entire
dataset with a single structure-encoded sequence, we

break down its tree structure into a set of sub struc-
tures, including item (objects for sale), person (buy-
ers and sellers), open auction, closed auction, etc.
We convert each instance of these sub structures into
a structure-encoded sequence. In our experiments, we
use an XMARK dataset generated by xmlgen [19] with
scaling factor 1.0, totaling 108 MBytes of data.

• Synthetic. We also generate our own synthetic datasets
for scalability tests. The data generator is based con-
ceptually on a tree of height k where each node has j
sub nodes. We generate a subtree of L nodes. First we
select the root node, then we randomly select the next
node x from the tree, under the condition that x has
not been selected, and x is a child node of a selected
node. We repeat this process N times to generate N
data sequences of length L. Random queries can be
generated in the same way. Since no semantic mean-
ing is associated with this synthetic dataset, we collect
statistics during data generation for dynamic labeling
purpose.

0

1

2

3

4

5

2 4 6 8 10 12

tim
e

(s
ec

.)

query length

RIST/VIST

(a) Synthetic: N=106, L=30. Query: varying lengths.

1

10

0 2 4 6 8 10 12

tim
e

(s
ec

.)

data size: N (*1,000,000 elements)

RIST/VIST

(b) Synthetic: N=?, L=60. Query: length l=6.

Figure 10: Random queries over Synthetic datasets

Performance of Query Processing
We first demonstrate the scalability of RIST and ViST with
regard to query processing. As both approaches use the
same sequence matching algorithm (Algorithm 2) and work
on the same index structure6, they exhibit the same perfor-
mance in query processing. We generate synthetic datasets
with parameters k = 10 and j = 8. The synthetic dataset
used in Figure 10(a) has 1,000,000 sequences, which are of
an average length of 30 elements. The query processing

6For any given dataset, the only difference between the index
structures constructed by RIST and ViST comes from the
handling of scope underflow in dynamic labeling, which is
insignificant under most situations.

time shown in the figure does not include the time spent in
data output after each range query on the DocId B+Tree.
Figure 10(a) indicates it takes more time to process longer
queries, as longer queries require larger amount of index
traversals. The synthetic datasets used in Figure 10(b) are
of varying sizes, but each is composed of sequences of the
same average length, 60. It shows that our index structure
scales up sub-linearly with the increase of data size. We also
tried synthetic datasets generated with different values of k
and j, and found no significant differences in performance.

We tried various kinds of queries on the DBLP and the
XMARK dataset, and compared RIST/ViST with two other
index methods. One method, using XML paths as the ba-
sic unit of query, is the Index Fabric algorithm [9] (without
the extra index for refined paths.) The other method is
XISS [16], which uses nodes as the basic query unit.

Table 3 lists 8 queries with ascending complexity. The ex-
perimental results of using RIST/ViST, Index Fabric (raw
paths), and XISS to answer these queries are summarized in
Table 4. Q1 is a single path query, and there is no attribute
values involved. RIST/ViST and Index Fabric have similar
response times, while it takes longer for XISS, as it joins the
results of two 2 sub queries. An attribute value is involved
in path query Q2, and it slows down Index Fabric and XISS
since value indexes require special handling in the two ap-
proaches. Q3 and Q4 use wild-cards, which affects the per-
formance of Index Fabric, unless both are treated specially
as refined paths (frequently occurring queries with additional
index support). Q5, · · · , Q8 are branching queries, and from
Table 4 we can see that RIST/ViST has the most satisfac-
tory performance. Note that each of the 8 queries is con-
verted to one structure-encoded sequence, and RIST/ViST
solves the query with one sequence matching, without us-
ing any join operations. Both Index Fabric (raw paths) and
XISS have to use (multiple) join operations to answer most
of the queries.

RIST/ViST raw path index node index
(Index Fabric) (XISS)

Q1 1.2 0.8 10.1
Q2 2.3 4.8 54.6
Q3 1.7 24.8 36.8
Q4 1.7 23.3 30.2
Q5 1.6 6.7 19.8
Q6 3.7 18.0 22.4
Q7 2.5 37.2 27.6
Q8 4.1 49.3 48.2

Table 4: Comparing RIST/ViST with path index
and node index (time in seconds)

Index Size and Index Construction Time
Finally, we study the space requirement of the index struc-
ture used in the RIST/ViST approach and the time it takes
to build such indexes. The index structure of ViST is real-
ized by two B+Trees, the DocId B+Tree and the combined
D-Ancestor and S-Ancestor B+Trees. Both B+Trees are
implemented using the Berkeley DB library [20]. For a
dataset with N sequences, each sequence having L elements
on an average, there are a total number of N entries in the
DocId B+Tree. This is because for each document, we make

Path Expression Dataset
Q1 /inproceedings/title DBLP
Q2 /book/author[text=‘David’] DBLP
Q3 /*/author[text=‘David’] DBLP
Q4 //author[text=‘David’] DBLP
Q5 /book[key=‘books/bc/MaierW88’]/author DBLP
Q6 /site//item[location=‘US’]/mail/date[text=‘12/15/1999’] XMARK
Q7 /site//person/*/city[text=‘Pocatello’] XMARK
Q8 //closed auction[*[person=‘person1’]]/date[text=‘12/15/1999’] XMARK

Table 3: Sample queries over DBLP and XMARK datasets

one insertion into the DocId B+Tree of the following infor-
mation: its DocId, together with the label of the last virtual
suffix tree node it reaches.

In the most unlikely case, the S-Ancestor and the D-Ancestor
B+Trees will have altogether N × L elements. This occurs,
of course, only if none of the sequences share any nodes in
the virtual suffix tree. Thus, the entire space requirement
of ViST is O(N + NL). RIST takes more space than ViST,
since it maintains a suffix tree, which is of size O(NL) in
the worst case.

Figure 11 shows the size of the index structure for DBLP
(301 Mbytes of data) and XMARK (for structure items only,
totaling 52 Mbytes of data). Figure 11(b) shows linear in-
dex construction time on synthetic datasets generated with
parameters k = 10, j = 8, and L = 32. In both tests,
we use disk pages of size 2K for Berkeley DB B+Trees,
and we use 8 bytes to label a virtual suffix tree node (i.e.,
MAX = 2256 − 1).

(a) Index Size (M Bytes)

0

50

100

150

200

250

0 10 20 30 40 50 60

tim
e

(m
in

)

dataset size (# of elements) * 1,000,000

RIST
VIST

(b) Index Construction Time

Figure 11: Index Structure

5. RELATED WORK

One of the most critical tasks in indexing XML documents is
to provide efficient support for arbitrary structured queries
with branches, wild-cards, etc. Most approaches find it
time-consuming to answer such queries, since they rely on
expensive join operations to combine results of multiple sub
queries based on small graph units, such as paths or ele-
ments, that are more easily manageable.

XISS [16] uses single elements/attributes as the basic unit
of query. A complex path expression is decomposed into a
collection of basic path expressions. Atom expressions (a
single element or attribute) are found by directly accessing
the index structure. All other forms of expressions involve
join operations. One of the merits of the XISS approach
is its flexibility, since all kinds of structural queries, includ-
ing regular expression queries, can be constructed using the
most basic building block: the atom expressions.

Paths are also used as the basic query unit. DataGuide [11]
provides concise summaries of path structures for a semi-
structured database. DataGuide is restricted to raw paths
and do not support complex path expression or regular ex-
pression queries [18]. The Index Fabric [9] is conceptually
similar to the DataGuide in that it indexes all raw paths
starting from the root element. In addition, it supports re-
fined paths, i.e., a set of query patterns that occur frequently.
Such query patterns can contain branches, wild-cards ‘*’ and
‘//’, etc. A tree-structured query not in the set of refined
paths, however, has to rely on join operations.

APEX [6] is an adaptive path index for XML data. Unlike
the traditional techniques, APEX uses data mining algo-
rithms to summarize paths that appear frequently in the
query workload. When the query workload changes, the
APEX is incrementally updated. Instead of keeping all
paths starting from the root, it maintains every path of
length two. Therefore, it also has to rely on join operations
to answer path queries with more than two elements.

Similar to Index Fabric [9], F+B Index [14] optimizes a set of
branching queries. It is based on the Forward and Backward
Index (F&B Index [1]), which covers all branching paths but
is often too big to be efficient in query evaluation. F+B In-
dex supports an index definition scheme to restrict the class
of branching queries being indexed. It attains significant
speedup for pre-defined query types but still has to rely on
the F&B index for generic queries.

Besides the ability of answering structured queries with branches
and wild-cards, it is also very important whether or not the

index structure contains value indexes in addition to struc-
ture indexes, since attribute values in the query often have
the major influence on selectivity. Many index methods,
including [11, 18, 6, 14], however, do not support value in-
dexes.

Another important criterion in evaluating index methods is
whether it relies on special data structures such as the suffix
tree that are not well-supported in DBMSs. The XISS ap-
proach [16] is based on B+Trees. Most other approaches, in-
cluding DataGuide [11], Index Fabric [9], APEX [6], F+B [14],
etc, however, rely on specialized data structures.

Recently, tree labeling has become a focus of study as it
is important in answering ancestorship queries. XISS [16],
for example, uses a static labeling scheme for this purpose.
Several studies [2, 3, 13] focus on the minimum label sizes.
Cohen et al [8] introduced a dynamic labeling scheme, which
is indispensable for dynamic index structures.

Our approach supports strutural XML queries by convert-
ing XML documents into sequeces. The indexing method
supports efficient non-contiguous sequece matching. A sim-
ilar technique is used for weighted-subsequece matching and
pattern discovery [21]. We unify structure indexes and value
indexes into a single index that relies solely on B+Trees
through a dynamic labeling method.

6. CONCLUSION
We have developed ViST, a dynamic indexing method for
XML documents. We convert XML data, as well as struc-
tured XML queries to sequences that encode their structural
information. Efficient sequence matching algorithms are in-
troduced to find XML documents that contain the struc-
tured queries. While state-of-the-art XML indexing meth-
ods have difficulty in handling queries containing branches,
insofar as most of them first disassemble a structured query
into multiple sub-queries each handling a single path in the
structured query, and then join the results of the sub-queries
to provide the final answers, ViST uses the structures as the
basic unit of query, which enables us to process, through
sequence matching, structured queries as a whole, and as a
result, to avoid expensive join operations. In addition, ViST
supports dynamic insertion of XML documents through the
top-down scope allocation method. Finally, the index struc-
ture of ViST is entirely based on B+Trees, which, unlike
some specialized data structures used in other approaches,
are well supported by DBMSs.

7. REFERENCES
[1] S. Abiteboul, P. Buneman, and D. Suciu. Data on the

web: from relations to semistructured data and XML.
Morgan Kaufmann Publishers, Los Altos, CA 94022,
USA, 1999.

[2] S. Abiteboul, H. Kaplan, and T. Milo. Compact
labeling schemes for ancestor queries. In Proc.
ACM-SIAM Symposium on Discrete
Algorithms(SODA), 2001.

[3] S. Alstrup and T. Rauhe. Improved labeling scheme
for ancestor queries. In Proc. ACM-SIAM Symposium
on Discrete Algorithms(SODA), 2002.

[4] D. Chamberlin, D. Florescu, J. Robie, J. Simon, and
M. Stefanescu. XQuery: A query language for XML

W3C working draft. Technical Report
WD-xquery-20010215, World Wide Web Consortium,
2001.

[5] D. Chamberlin, J. Robie, and D. Florescu. Quilt: An
XML query language for heterogeneous data sources.
In WebDB, May 2000.

[6] C. Chung, J. Min, and K. Shim. APEX: An adaptive
path index for XML data. In ACM SIGMOD, June
2002.

[7] J. Clark and S. DeRose. XML path language (XPath)
version 1.0 w3c recommendation. Technical Report
REC-xpath-19991116, World Wide Web Consortium,
1999.

[8] Edith Cohen, Haim Kaplan, and Tova Milo. Labeling
dynamic XML trees. In PODS, pages 271–281, 2002.

[9] Brian F. Cooper, Neal Sample, Michael Franklin, Am
(Bsli Hjaltason G , and Moshe Shadmon. A fast index
for semistructured data. In VLDB, pages 341–350,
September 2001.

[10] A. Deutsch, M. Fernandez, D. Florescu, A. Levy, and
D. Suciu. A query language for XML. In Proceedings
of the 8th International World Wide Web Conference,
pages 77–91, May 1999.

[11] R. Goldman and J. Widom. DataGuides: Enable
query formulation and optimization in semistructured
databases. In VLDB, pages 436–445, August 1997.

[12] Dan Gusfield. Algorithms on Strings, Trees, and
Sequences. Cambridge University Press, 1997.

[13] H. Kaplan, T. Milo, , and R.Shabo. A comparison of
labeling schemes for ancestor queries. In Proc.
ACM-SIAM Symposium on Discrete
Algorithms(SODA), 2002.

[14] R. Kaushik, P. Bohannon, J. Naughton, and H. Korth.
Covering indexes for branching path queries. In ACM
SIGMOD, June 2002.

[15] Michael Ley. DBLP database web site.
http://www.informatik.uni-trier.de/ ley/db, 2000.

[16] Q. Li and B. Moon. Indexing and querying XML data
for regular path expressions. In VLDB, pages 361–370,
September 2001.

[17] E. M. McCreight. A space-economical suffix tree
construction algorithm. Journal of the ACM,
23(2):262–272, April 1976.

[18] T. Milo and D. Suciu. Index structures for path
expression. In Proceedings of 7th International
Conference on Database Theory (ICDT), pages
277–295, January 1999.

[19] A. R. Schmidt, F. Waas, M. L. Kersten, D. Florescu,
I. Manolescu, M. J. Carey, and R. Busse. The XML
benchmark project. Technical Report INS-R0103,
Centrum voor Wiskunde en Informatica, 2001.

[20] Sleepycat Software, http://www.sleepycat.com. The
Berkeley Database (Berkeley DB).

[21] Haixun Wang, Chang shing Perng, Wei Fan,
Sanghyun Park, and Philip S. Yu. Indexing weighted
sequences in large databases. In ICDE, 2003.

[22] The internet movie database. http://www.imdb.com,
2000.

[23] XMARK: The XML-benchmark project.
http://monetdb.cwi.nl/ xml, 2002.

