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Abstract— In this paper, we propose a multiversion index 
utilizing key features of SSDs (solid state drives). SSDs have 
many advantages, e.g., fast read/write performance, high 
energy efficiency, and non-volatility. Thus, SSDs have been 
considered for several years as a promising alternative to 
HDDs (hard disk drives). Many studies have made progress 
in optimizing and modifying HDD-based database 
management system (DBMS) to suit SSDs. In the case of 
multiversion databases, which manage not only keys and 
but also versions, research optimizing SSD query processing 
has been ignored in comparison with single versioned 
databases. Generally, the multiversion databases manage an 
evolving data which is processed in a cyber physical system 
or an accounting system. Therefore, the data is large and the 
index structure requires frequent rearrangement of its 
structure to maximize efficiency, which is called structure 
modification operation. The multiversion index based on 
HDDs utilizes random writes to conduct the structure 
modification operation. This feature can introduce crucial 
performance problems on SSDs, because the speed of 
random writes on SSDs is much slower than the speed of 
sequential writes. We propose a Bulk Split multiversion tree 
(BSMVBT) index that utilizes sequential pattern I/O and 
out-of-place updates of SSDs. Experimental results showed 
that it is 10% – 30% faster than the compared version. 

I. INTRODUCTION 

Flash disks or SSDs (solid state drives) have received 
attention from enterprises and researchers, because they 
have emerged as promising alternatives to a hard disk 
drive (HDDs). Because SSDs have the advantages of high 
read/write performance, low power consumption, high 
energy efficiency and non-volatility, SSDs are frequently 
used as cache storage between main memory and the hard 
disk, as the main data storage. 

However, SSDs also have key features that can lower 
the overall performance of a program. For example, SSDs 
have asymmetric read and write speeds. Moreover, 
performance of random writes is lower than the 
performance of sequential writes. In addition, SSDs have 
an erase operation that is necessary to manage invalid data 
resulted from the feature of the flash memory that does 
not allow data to be updated in place. The erase operation 
can affect overall performance because overhead of the 
operation is heavy. Many previous studies have optimized 
database management systems to overcome these SSD 
features to improve the overall performance.  

FD-tree[10] and psync I/O (PIO) B-tree[12] are 
representative single version index structure which 
improve the read/write performance in SSDs. FD-tree 
reduces the number of random writes utilizing fractional 
cascading and logarithmic techniques.  It converts the 
random writes of the original B-tree index to sequential 
writes. PIO B-tree utilizes the internal parallelism of SSDs 
to improve the speed of random writes. PIO B-tree 
collects a number of random I/O to send at the same time, 
because SSDs can handle I/O in parallel, maximizing 
efficiency. 

As sensing technologies have been developed, 
multiversion databases has been noticed in recent years. 
The multiversion databases have been utilized in various 
fields. For example, log record system which monitors the 
status of objects or location prediction system which 
tracks the movement of objects can apply the multiversion 
databases. While the data structure affects the overall 
performance of system totally, the optimization of the 
multiversion data structure in SSDs has been 
comparatively ignored in contrast to single-version. 
Transactional multiversion B-tree [7] (TMVBT) is a 
representative multiversion index structure based on a 
partially persistent database that allows only one update 
transaction with several read only transactions. The 
transactional multiversion B-tree generates many random 
writes to conduct its structure-modification operation, 
which is called a key split, or a version split. TMVBT has 
two dimensional spaces, e.g., key and version, so split 
operations that generate random writes are much more 
frequent than in the original B-tree index. 

Because of the slow speed of random writes in 
comparison with sequential writes, SSDs lose efficiency. 
Therefore, the multiversion index also requires adaptation 
for SSDs to improve read/write performance utilizing 
sequential I/O. In addition, SSDs have old version data 
before the garbage collection operation occurs, because 
flash memory does not allow overwrites. This point can be 
coordinated with storing multiversioned data.  

We propose a multiversion index structure with 
techniques of converting random writes to sequential 
writes and utilizing the preserved old version data to 
perform a structure-modification operation of the index. 

The paper is organized as follows. In Section 2, we 
review previous research about SSD optimization 
techniques. In Section 3, we propose a multiversion index 
structure and explain its basic operations and structure 



 

 

modification operations. In Section 4, we evaluate the 
performance of our structure. Finally, we conclude in 
Section 5. 

II. RELATED WORK 

A. FD-tree 
FD-tree is an index structure designed to improve the 

random write performance of SSDs. FD-tree takes 
advantage of hardware features of the SSDs by utilizing 
sequential accesses, eliminating the slow random writes. 
As shown in Figure 1, FD-tree is composed of a B+tree 
called a head tree and several levels. Each level is limited 
to a constant size and the level is ordered by key. As the 
level decreases, the size of the level increases at a constant 
rate. FD-tree applies a fractional cascading algorithm to 
improve the read performance. 

FD-tree uses a fence to implement the fractional 
cascading. A fence is a data structure that has a pointer to 
indicate the first entry of a specific page. During search 
operation of FD-tree, the fence accesses the pointer to 
avoid searching all of the pages of the next level. The key 
of the first entry of each page in the next level is same as 
the key of the fence. Because the entries of each level are 
sorted in ascending order, including the fence, the pages in 
the sorted level efficiently utilize a sequential write during 
FD-tree operations.  

The insert operation is accomplished by inserting a key 
into the head tree which is composed of the original 
B+tree. When the number of keys exceeds the size of the 
leaf level of the head tree, a merge operation is performed 
to flush the keys to a lower level. The merge operation is 
based on the merge-sort algorithm. After the merge 
operation, an algorithm that reflects fences to higher levels 
is executed to support the search operation. 

The search operation is accomplished by looking up a 
key in the head tree. If the key is not in the head tree, a 
binary search is performed to find the greatest fence key 
equal to or less than the desired key. The search operation 
is supported by the fence which points to the pages in the 
next level. The delete operation inserts a fake key equal to 
the key that is to be deleted. When the fake key meets the 
specific key through the merge operation, the key will be 
removed physically. 

It has been shown that FD-tree dominates the other B-
tree variants on SSDs by utilizing the above efficient 
techniques. However, FD-tree is only utilized in a single-
version database and is regarded as an unsuitable index 
structure for multiversion data. 
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Figure 1: Overview of FD-tree 

 

B. Transactional Multiversion B-tree 
The transactional multiversion B-tree (TMVBT) (see 

Figure 2) is an extension of the original B-tree adapted for 

SSDs to index multiversioned data. In [1], Becker et al., 
proposed the multiversion B-tree (MVBT) for indexing 
multiversions of data. MVBT is a directed acyclic graph 
of B-tree nodes. MVBT maintains multiple B-tree root 
nodes in its own data structure to partition the version 
space of the data items. The transactional multiversion B-
tree is a variant of MVBT that allows multiple data items 
in one transaction and supports ARIES-based recovery. 
TMVBT allows partial persistence, the same as MVBT, 
which has only one update transaction in recent version. 
However, the number of read only transactions is 
unlimited and can access any version less than the update 
version. 

TMVBT is mainly used to support temporal databases 
for indexing evolving data, such as engineering designs, 
land registers, scheduling applications, inventory control 
systems, moving object databases, etc. Furthermore, 
because TMVBT preserves the previous state of the data, 
TMVBT is applied to recovery systems that do not store 
log files. Even though TMVBT has high availability in a 
specific database, research on optimizing TMVBT for 
SSDs has been ignored in comparison with single version 
index structure. 

As shown Figure 3, the transactional multiversion B-
tree (TMVBT) has two basic operations; key split and 
version split. The key split is the same as the key-split 
operation of the conventional B-tree. When the number of 
keys in one node exceeds the capacity of the node, it 
requires a distribution of keys. The key split leads to 
distributing keys according to the key range. The key split 
only occurs on active pages that are modified by a current 
update transaction. 

In contrast to the key split, the version split occurs on 
inactive pages that were modified by the previous update 
transaction. The version split has the role of splitting the 
version range of a data item, resulting in the creation of a 
new root that represents the specific version range. The 
creation of the new root supports high concurrency control 
because several read-only transactions can access the old 
root structure and read data from the old version tree. 

Because of the SSDs’ poor random-write performance, 
TMVBT’s key split and the version split cause a heavy 
cost while processing queries. Due to the feature of 
TMVBT that the version of an update transaction 
continuously increases, version splits occur frequently. 
Furthermore, since TMVBT allows multiple data to be 
updated in one update transaction, many key splits are 
also performed frequently. Therefore, TMVBT requires an 
adaptation for SSDs with a method of eliminating random 
writes. 
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Figure 2: Overview of a Transactional Multiversion B-tree 
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Figure 3: Key Split and Version Split of a Transactional 

Multiversion B-tree 

III. BULK SPLIT MULTIVERSION TREE 

A. Overview 
In this paper, we propose a multiversion index structure 

based on FD-tree. FD-tree doesn’t support multiversion 
database, so we modify it by adding timestamp data to the 
entry as shown in Figure 4. Each entry has information 
about keys and a timestamp equivalent to the version. 
Entries also have a dead flag that indicates when the entry 
is dead. 

The Bulk Split multiversion index tree is composed of a 
head tree and several levels. The head tree is a variant of 
TMVBT that supports a new type of entry structure. 
Entries in each level are sorted by key and timestamp 
value. Firstly, entries are sorted by key value, and in case 
of same key, entries are sorted by timestamp value.  

In addition, we regard out-of-place SSD updates as a 
solution that reduces random writes. Because the 
multiversion database is intended to be partially persistent, 
a read-only transaction can access invalid pages in the old 
version without an additional split operation. Thus we 
allow each root structure that represents a specific version 
range to manage its own file pointer to decide whether to 
utilize file append when structure modification operation 
occur. The read-only transaction can access old version 
data without making a new level for them. Furthermore, 
the file append leads to better performance when all live 
data in the old version are inserted to a new root.  

B. Insert Operation 
The insert operation starts by inserting an entry into 

head tree that is composed of TMVBT. When the number 
of leaf nodes of the head tree exceeds a constant value, the 
data must be flushed to a lower level. The 
RunMergeOperation that merges two adjacent levels 
based on merge-sort algorithm occur recursively from a 
level which includes leaf nodes. After the 
RunMergeOperation function completes, the 
InsertFenceOperation that inserts fence into higher level to 
support the search operation. Like the FD-tree, we utilize 
fractional cascading and insert a fence which is a data 
structure that points to the ID of a page in the next level. 

Once all of the merge operation processes are complete, 
we check whether the total sum of dead entries in each 
level exceeds a threshold. If so, we execute a structure 
modification operation called a sequential version split 
operation. 
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Figure 4: Overview of Bulk-Split Multiversion Tree. The 
structure modification operation leads to inserting all live 
data in the old version to the new root, which is appended to 
the old root in the file.  

 
Algorithm 1 InsertOperation(Entry, Root, Run) 

Description 
Insert operation of the Bulk Split multiversion tree. 
Firstly, Insert entires to TMVBT. When the number 

of leaf nodes of the TMVBT exceeds a constant 
value, the data must be flushed to a lower level. 

When the merge operation processes are complete, 
we check whether the total sum of dead entries in 
each level exceeds a threshold. If so, we execute a 
structure modification operation called a sequential 

version split operation. 

 
Input  
Entry  : Input entry which has key, timestamp, 

Dead/Live flag and pointer to pages in next level  
Root : TMVBT root which has a specific version 

range, file descriptor and pointer information of the 
current version 
Run : Data structure that manages levels under 

tree  
Output none 

1 InsertOperation to TMVBT 
2 If [ the number of TMVBT leaves exceeds a 

sepecific constant value] 
Then 

3 RunMergeOperation(level 0 , level 1, Root); 
/* level 0 is composed of TMVBT leaf nodes*/ 

4
5

  

6

InsertFenceOperation(Run) 
If [ CheckDeadEntryNumExceed() == true ] 
then 
/* CheckDeadEntryNum() checks the sum of the 

levels’ dead entries*/ 
  SequentialVersionSplitOperation(Root, Run); 
end 

 
 end 
  

 



 

 

C. Search Operation 
Each level is sorted by key-timestamp order. Basically, 

entries in a level are sorted in key order. When entries 
have the same keys, they are sorted in timestamp order. A 
search operation is conducted sequentially from the root 
of the head tree. The search operation tries to find the key 
or the greatest fence value less than the desired key that 
points to pages in the next level. When the fence is found, 
the search operation continues in next level. When the key 
is found, a binary search algorithm is used to find the 
desired timestamp value. This process continues until the 
desired key-version entry is found. 

D. Merge Operation 
The merge operation is the main operation of the Bulk 

Split multiversion tree index. The process is performed on 
two adjacent levels when the smaller one exceeds its size 
limit. The operation sequentially scans two levels, and 
combines them into one level to utilize the conventional 
merge-sort algorithm. The operation compares the key 
value and timestamp value of the two entries and arranges 
them in ascending order. 

We developed the existing FD-tree merge operation to 
support the multiversion. Using a dead flag, we 
implemented not only a physical deletion that actually 
removes the entry but also a deletion by version update 
that splits the version range. During the merge operation, 
when two entries from different level have the same key, 
we compare their timestamps and dead flags. The dead 
flag stores the timestamp when an entry becomes dead. If 
an entry in the smaller level which sets its dead flag meets 
another entry in the bigger level with the same key value, 
the dead flag of the entry in the bigger level is changed 
with the one in the smaller level, and the smaller level 
entry is not written to the new level. Increasing the 
number of dead entries results in splitting the version 
range. This variant of the merge operation enables us to 
split the version range utilizing sequential I/O because 
handling the dead entries is occurred in unit of level. 
When live entries are separated from old and dead entries, 
random writes that occur by inserting live entries are 
transformed to sequential writes due to the structural 
features. Under the maximum bandwidth of SSDs, the 
merge operation utilizes the sequential reads and writes 
with better performance than the conventional 
multiversion B-tree. 

 

Algorithm 2 MergeOperation( level 1, level 2, Root ) 

 Description 
When the number of entries in specific level exceeds its 
allowed size, it requires an operation to merge its data 
with the data of the next level 

 Input  
level : Target levels of merge operation 
Root : TMVBT root which has the specific version 

range, file descriptor and pointer information of the 
current version 

 Output none 
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Entry p,q; 
While (p != NULL && q!=NULL)  
then 

p = ReadEntryFrom(level 1); 
q = ReadEntryFrom(level 2); 
If [p.key > q.key] 
then 
    write q to L’ // L’ is new level to insert 
    point to next entry of q in level 2 
end 
If [p.key < q.key] 
then 
    write p to L’ 
    point to next entry of p in Level 1 
end 
If [ p.key == q.key ] 
then 

If [p.timestamp > q.timestamp] 
then 
/*dead flag expresses when entry is dead*/ 

If [p.dead != 0] /* delete by delete operation*/
then 

            q.dead = p.dead; 
            write q to L’ 
          point to next entry of p,q in level 1, level 2 

end 
If [p.dead == 0] /* delete by version split */ 

          then 
            q.dead = p.timestamp 
            write q to L’ 
          point to next entry of p,q in level 1, level 2 

end 
end 
If [ p.timestamp == q.timestamp ]  
then  

/* physically remove */ 
point to next entry of p,q in level 1, level2 

end 
end 
If [ L’ is full ] 

    then 
      MergeOperation with next level 

end 
end 
Replace L’ with level 2 

 

E. Delete Operation 
In contrast to the other operations, the delete operation 

is simple. It starts by inserting an entry with a dead flag. 
The dead flag is set to represent when the entry is dead. A 
saved timestamp indicates when the delete operation 
occurred. The delete operation is actually performed 
during the merge operation. During the merge operation, 
when two dead entries that have the same key meet each 
other, the entry in the higher level is removed and the 
other entry saves the higher-level entry’s dead flag in its 
own flag. Thus, when we search the entry, we can tell that 
the entry is dead and when it occurred. 



 

 

F. Structure Modification Operation 
The Structure-modification operation is necessary to 

manage the version ranges and provide high concurrency 
control in the multiversion tree. The main idea of the 
operation is to make a data structure to manage 
information, such as file descriptors and pointers to 
eliminate additional writes that is necessary to preserve 
the old version data. Flash memory has the feature of out-
of-place updates; a page cannot be overwritten and it 
produces additional writes. For example, if one page is 
updated by a transaction, it becomes two pages: an old 
version page and a new version page. Even though the 
multiversion database has many read-only transactions 
and can access these old pages without additional write 
operation, the conventional multiversion tree index does 
not use the feature. 

Thus, we propose to provide information about the file 
descriptor and file pointer of a specific version range to 
the root of the tree that represents a particular version. A 
root structure uses the information to locate where the 
levels and head tree are written in the file. If version 
splitting is unnecessary, the levels and head tree are 
overwritten at a previous location because the cost of the 
version splitting is more crucial than the performance 
benefit resulting from utilizing old pages. However, when 
too many dead entries remain in the total structure, 
version splitting is necessary. In this case, a new head tree 
and new levels are appended to the back of the old head 
tree and levels, and a new file pointer provided for a new 
root structure. Because the size of each level is invariant, 
appending and accessing levels or a head tree with 
particular file pointer information is possible. After a new 
root structure receives the file information, all live entries 
in old version tree are inserted into a new tree 
transforming random writes to sequential writes. Read 
transactions can access the old pages by referencing the 
file information in the old root without additional writes to 
make a new level for the old data. 

 

Algorithm 3 SequentialVersionSplitOperation (Root, 
Run) 

 Description 
Increasing the number of dead entries in Sequential 
Split multiversion tree requires a split oepration by 
version range. 

 Input  
Root : TMVBT root which has specific version 

range, file descriptor and pointer information of the 
current version 
Run : Data structure that manages the levels 

under tree  
 

 Output none 
1 
 
 

2 
 

InsertNewRoot(newRoot);  
/* create a new data structure which has a new file 
descriptor, and pointer information of the current 
version.*/ 
Insert all live entries in Root & Run to new Root 
/* old version is preserved at the location which is 
pointed to by the old Root structure*/ 
End 

  

Level 0

Level 1

Level 2

Run headers that include 
the number of dead entries

new versionold version

Root[0] Root[1]

 
Figure 5: Sequential Version Split operation. When dead 
entries do not exceed a threshold, old version levels are 
overwritten by the new version levels. When the dead 
entries are enough to split, the old version levels are 
preserved and the new version levels are appended to old 
version levels. 

IV. EXPERIMENT AND RESULT 

In this section, we describe the evaluation of our Bulk 
Split multiversion tree in comparison with the 
transactional multiversion B-tree. We implemented 
TMVBT and Bulk Split multiversion tree using Direct I/O, 
and we experiment the performance of the tree with input 
queries that is made virtually. 
We ran our experiments on a computer with an Intel i7-
3770 quad core CPU 3.4GHz on CentOS 6.6 with 4GB 
main memory and an OCZ Vector 120GB SSD. 

We experiment the operation of the tree index using 
Direct I/O. The size of one page was 4KB, and the size of 
one entry was 24 bytes. We simulated the case of 1000 
insertions in five transactions, 1000 insertions in eight 
transactions and 1000 insertions in ten transactions. In the 
case of TMVBT, raw flash memory cannot allow 
overwrites so the split operations can affect more than 
three pages (target page, created page, parent page). Even 
when we only modify the key-value range in the header, it 
requires additional page writes. Thus, when many data 
inputs are inserted into TMVBT, a critical performance 
issue results. Moreover, if the version was frequently 
changed, too many version splits would occur, and require 
many random writes. Figure 6 shows that the Bulk Split 
multiversion tree is 1.1 - 1.3x faster than TMVBT in case 
of insert operations. Figure 7 shows the experimental 
result of execution time when the operations are 
composed of inserts and deletes. Because it utilizes 
sequential I/O, Bulk Split multiversion tree receives the 
benefit of the performance. The number of data items in 
one transaction and the number of version changes affect 
the gap of performance between TMVBT and the Bulk 
Split multiversion tree. 

Moreover, Figure 8 shows that the operation time is 
varied according to the number of leaves of head tree. The 
more the number of leaves of tree is, the faster the 
operation is. As the number of leaves increases, the tree 
utilizes sequential I/O better. We experiment it with 1000 
insertions in ten transactions. 



 

 

 

Figure 6: Experimental result. The Y-axis shows the total 
operation time, and the X-axis shows the type of queries 
about insertions. 
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Figure 7: Experimental result. The Y-axis shows the total 
operation time, and the X-axis shows the types of queries 
about insertions and deletions. 

 
Figure 8: Varying the number of Leaves of Head Tree in 
case of 1000 inserts in ten transactions. 

V. CONCLUSION AND FUTURE WORK 

Previous multiversion index structures originally based 
on hard disk drives generate too many random writes due 
to their rearrangement of structure that is necessary to 
balance the structure. Because SSDs have better 
performance on sequential writes than random writes, the 
multiversion index structure requires a new design to 
improve overall performance. In this paper, we proposed a 
multiversion index structure that utilizes key features of 

SSDs (solid state drives). We designed our tree index with 
methods of reducing slow random writes. We converted 
the conventional index structure to utilize sequential 
writes. Furthermore, we mitigated additional random 
writes resulting from out-of-place update of SSD. Because 
a multiversion database is assumed to have only one 
update transaction and a few read-only transactions, we 
can read access version data without additional structure 
modification operations. As the SSD overwrite cost is 
heavy, eliminating the cost of the version splits affects the 
overall performance of the index structure. 

We believe that it is possible to apply the proposed data 
structure to practical systems. Moreover, it is possible to 
extend our algorithm to exploit characteristics of the data 
in specific system, such as location prediction system.  
Furthermore, we will apply the index structure to flash 
aware distributed database systems. 
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