

978-1-5090-1897-0/16/$31.00 ©2016 IEEE

Optimization of a Multiversion Index on SSDs to
improve System Performance

Won Gi Choi*, Mincheol Shin*, Doogie Lee*, Hyunjun Park⁑, Sanghyun Park*,✝
* Department of Computer Science, Yonsei University,

50 Yonsei-ro, Seodaemun-gu, Seoul, Korea
{cwk1412, smanioso, edoogie, sanghyun}@yonsei.ac.kr

⁑Department of Computer Science, University of the Pacific,
3601 Pacific Avenue, Stockton, California 95211, USA

j_park32@u.pacific.edu
✝Corresponding Author

Abstract— In this paper, we propose a multiversion index
utilizing key features of SSDs (solid state drives). SSDs have
many advantages, e.g., fast read/write performance, high
energy efficiency, and non-volatility. Thus, SSDs have been
considered for several years as a promising alternative to
HDDs (hard disk drives). Many studies have made progress
in optimizing and modifying HDD-based database
management system (DBMS) to suit SSDs. In the case of
multiversion databases, which manage not only keys and
but also versions, research optimizing SSD query processing
has been ignored in comparison with single versioned
databases. Generally, the multiversion databases manage an
evolving data which is processed in a cyber physical system
or an accounting system. Therefore, the data is large and the
index structure requires frequent rearrangement of its
structure to maximize efficiency, which is called structure
modification operation. The multiversion index based on
HDDs utilizes random writes to conduct the structure
modification operation. This feature can introduce crucial
performance problems on SSDs, because the speed of
random writes on SSDs is much slower than the speed of
sequential writes. We propose a Bulk Split multiversion tree
(BSMVBT) index that utilizes sequential pattern I/O and
out-of-place updates of SSDs. Experimental results showed
that it is 10% – 30% faster than the compared version.

I. INTRODUCTION

Flash disks or SSDs (solid state drives) have received
attention from enterprises and researchers, because they
have emerged as promising alternatives to a hard disk
drive (HDDs). Because SSDs have the advantages of high
read/write performance, low power consumption, high
energy efficiency and non-volatility, SSDs are frequently
used as cache storage between main memory and the hard
disk, as the main data storage.

However, SSDs also have key features that can lower
the overall performance of a program. For example, SSDs
have asymmetric read and write speeds. Moreover,
performance of random writes is lower than the
performance of sequential writes. In addition, SSDs have
an erase operation that is necessary to manage invalid data
resulted from the feature of the flash memory that does
not allow data to be updated in place. The erase operation
can affect overall performance because overhead of the
operation is heavy. Many previous studies have optimized
database management systems to overcome these SSD
features to improve the overall performance.

FD-tree[10] and psync I/O (PIO) B-tree[12] are
representative single version index structure which
improve the read/write performance in SSDs. FD-tree
reduces the number of random writes utilizing fractional
cascading and logarithmic techniques. It converts the
random writes of the original B-tree index to sequential
writes. PIO B-tree utilizes the internal parallelism of SSDs
to improve the speed of random writes. PIO B-tree
collects a number of random I/O to send at the same time,
because SSDs can handle I/O in parallel, maximizing
efficiency.

As sensing technologies have been developed,
multiversion databases has been noticed in recent years.
The multiversion databases have been utilized in various
fields. For example, log record system which monitors the
status of objects or location prediction system which
tracks the movement of objects can apply the multiversion
databases. While the data structure affects the overall
performance of system totally, the optimization of the
multiversion data structure in SSDs has been
comparatively ignored in contrast to single-version.
Transactional multiversion B-tree [7] (TMVBT) is a
representative multiversion index structure based on a
partially persistent database that allows only one update
transaction with several read only transactions. The
transactional multiversion B-tree generates many random
writes to conduct its structure-modification operation,
which is called a key split, or a version split. TMVBT has
two dimensional spaces, e.g., key and version, so split
operations that generate random writes are much more
frequent than in the original B-tree index.

Because of the slow speed of random writes in
comparison with sequential writes, SSDs lose efficiency.
Therefore, the multiversion index also requires adaptation
for SSDs to improve read/write performance utilizing
sequential I/O. In addition, SSDs have old version data
before the garbage collection operation occurs, because
flash memory does not allow overwrites. This point can be
coordinated with storing multiversioned data.

We propose a multiversion index structure with
techniques of converting random writes to sequential
writes and utilizing the preserved old version data to
perform a structure-modification operation of the index.

The paper is organized as follows. In Section 2, we
review previous research about SSD optimization
techniques. In Section 3, we propose a multiversion index
structure and explain its basic operations and structure

modification operations. In Section 4, we evaluate the
performance of our structure. Finally, we conclude in
Section 5.

II. RELATED WORK

A. FD-tree
FD-tree is an index structure designed to improve the

random write performance of SSDs. FD-tree takes
advantage of hardware features of the SSDs by utilizing
sequential accesses, eliminating the slow random writes.
As shown in Figure 1, FD-tree is composed of a B+tree
called a head tree and several levels. Each level is limited
to a constant size and the level is ordered by key. As the
level decreases, the size of the level increases at a constant
rate. FD-tree applies a fractional cascading algorithm to
improve the read performance.

FD-tree uses a fence to implement the fractional
cascading. A fence is a data structure that has a pointer to
indicate the first entry of a specific page. During search
operation of FD-tree, the fence accesses the pointer to
avoid searching all of the pages of the next level. The key
of the first entry of each page in the next level is same as
the key of the fence. Because the entries of each level are
sorted in ascending order, including the fence, the pages in
the sorted level efficiently utilize a sequential write during
FD-tree operations.

The insert operation is accomplished by inserting a key
into the head tree which is composed of the original
B+tree. When the number of keys exceeds the size of the
leaf level of the head tree, a merge operation is performed
to flush the keys to a lower level. The merge operation is
based on the merge-sort algorithm. After the merge
operation, an algorithm that reflects fences to higher levels
is executed to support the search operation.

The search operation is accomplished by looking up a
key in the head tree. If the key is not in the head tree, a
binary search is performed to find the greatest fence key
equal to or less than the desired key. The search operation
is supported by the fence which points to the pages in the
next level. The delete operation inserts a fake key equal to
the key that is to be deleted. When the fake key meets the
specific key through the merge operation, the key will be
removed physically.

It has been shown that FD-tree dominates the other B-
tree variants on SSDs by utilizing the above efficient
techniques. However, FD-tree is only utilized in a single-
version database and is regarded as an unsuitable index
structure for multiversion data.

63 72

63 65 68

69 7563 64 6760 61 62

Level L1

Leaf Level L2

Head Tree L0

63

38 59 60

Page

Index Entry

Fence

Figure 1: Overview of FD-tree

B. Transactional Multiversion B-tree
The transactional multiversion B-tree (TMVBT) (see

Figure 2) is an extension of the original B-tree adapted for

SSDs to index multiversioned data. In [1], Becker et al.,
proposed the multiversion B-tree (MVBT) for indexing
multiversions of data. MVBT is a directed acyclic graph
of B-tree nodes. MVBT maintains multiple B-tree root
nodes in its own data structure to partition the version
space of the data items. The transactional multiversion B-
tree is a variant of MVBT that allows multiple data items
in one transaction and supports ARIES-based recovery.
TMVBT allows partial persistence, the same as MVBT,
which has only one update transaction in recent version.
However, the number of read only transactions is
unlimited and can access any version less than the update
version.

TMVBT is mainly used to support temporal databases
for indexing evolving data, such as engineering designs,
land registers, scheduling applications, inventory control
systems, moving object databases, etc. Furthermore,
because TMVBT preserves the previous state of the data,
TMVBT is applied to recovery systems that do not store
log files. Even though TMVBT has high availability in a
specific database, research on optimizing TMVBT for
SSDs has been ignored in comparison with single version
index structure.

As shown Figure 3, the transactional multiversion B-
tree (TMVBT) has two basic operations; key split and
version split. The key split is the same as the key-split
operation of the conventional B-tree. When the number of
keys in one node exceeds the capacity of the node, it
requires a distribution of keys. The key split leads to
distributing keys according to the key range. The key split
only occurs on active pages that are modified by a current
update transaction.

In contrast to the key split, the version split occurs on
inactive pages that were modified by the previous update
transaction. The version split has the role of splitting the
version range of a data item, resulting in the creation of a
new root that represents the specific version range. The
creation of the new root supports high concurrency control
because several read-only transactions can access the old
root structure and read data from the old version tree.

Because of the SSDs’ poor random-write performance,
TMVBT’s key split and the version split cause a heavy
cost while processing queries. Due to the feature of
TMVBT that the version of an update transaction
continuously increases, version splits occur frequently.
Furthermore, since TMVBT allows multiple data to be
updated in one update transaction, many key splits are
also performed frequently. Therefore, TMVBT requires an
adaptation for SSDs with a method of eliminating random
writes.

[-∞,4), [1, 2), p3

(1, [1, 2))
(2, [1, 2))
(3, [1, 2))

[-∞, ∞), [1, 2), p6

[-∞,4), [1, 2), p3
[4, ∞), [1, 2), p5

[4, ∞), [1, 2), p5

(4, [1, 2))
(5, [1, 2))
(6, [1, 2))

[-∞, ∞), [2, ∞), p7

(1, [2, ∞))
(2, [2, ∞))
(3, [2, ∞))

New root

Root *

Figure 2: Overview of a Transactional Multiversion B-tree

[-∞,7), [1, ∞), p3

(1, [1, ∞))
(2, [1, ∞))
(3, [1, ∞))

[10, ∞), [2, ∞), p8

(10, [2, ∞))
(11, [2, ∞))
(12, [2, ∞))

[-∞, ∞), [1, ∞), p6

[-∞,7), [1, ∞), p3
[7, ∞), [1, 2), p5

[7, 10), [2, ∞), p7
[10, ∞), [2, ∞), p8

[7, ∞), [1, 2), p5

(7, [1, 2))
(8, [1, 2))
(9, [1, 2))

[7, 10), [2, ∞), p7

(7, [2, ∞))
(8, [2, ∞))
(9, [2, ∞))

Dead page

Version split Key split

Figure 3: Key Split and Version Split of a Transactional

Multiversion B-tree

III. BULK SPLIT MULTIVERSION TREE

A. Overview
In this paper, we propose a multiversion index structure

based on FD-tree. FD-tree doesn’t support multiversion
database, so we modify it by adding timestamp data to the
entry as shown in Figure 4. Each entry has information
about keys and a timestamp equivalent to the version.
Entries also have a dead flag that indicates when the entry
is dead.

The Bulk Split multiversion index tree is composed of a
head tree and several levels. The head tree is a variant of
TMVBT that supports a new type of entry structure.
Entries in each level are sorted by key and timestamp
value. Firstly, entries are sorted by key value, and in case
of same key, entries are sorted by timestamp value.

In addition, we regard out-of-place SSD updates as a
solution that reduces random writes. Because the
multiversion database is intended to be partially persistent,
a read-only transaction can access invalid pages in the old
version without an additional split operation. Thus we
allow each root structure that represents a specific version
range to manage its own file pointer to decide whether to
utilize file append when structure modification operation
occur. The read-only transaction can access old version
data without making a new level for them. Furthermore,
the file append leads to better performance when all live
data in the old version are inserted to a new root.

B. Insert Operation
The insert operation starts by inserting an entry into

head tree that is composed of TMVBT. When the number
of leaf nodes of the head tree exceeds a constant value, the
data must be flushed to a lower level. The
RunMergeOperation that merges two adjacent levels
based on merge-sort algorithm occur recursively from a
level which includes leaf nodes. After the
RunMergeOperation function completes, the
InsertFenceOperation that inserts fence into higher level to
support the search operation. Like the FD-tree, we utilize
fractional cascading and insert a fence which is a data
structure that points to the ID of a page in the next level.

Once all of the merge operation processes are complete,
we check whether the total sum of dead entries in each
level exceeds a threshold. If so, we execute a structure
modification operation called a sequential version split
operation.

f f f

f f f f f f

11(2)

Too many dead entries

1(2) key(timestamp) page f fence

11(1)

append

Root *

New root

old root

11(3)3(3)3(2) 8(1)1(2)1(1) 3(1)

3(4)1(4) 11(4)

Figure 4: Overview of Bulk-Split Multiversion Tree. The
structure modification operation leads to inserting all live
data in the old version to the new root, which is appended to
the old root in the file.

Algorithm 1 InsertOperation(Entry, Root, Run)

Description
Insert operation of the Bulk Split multiversion tree.
Firstly, Insert entires to TMVBT. When the number

of leaf nodes of the TMVBT exceeds a constant
value, the data must be flushed to a lower level.

When the merge operation processes are complete,
we check whether the total sum of dead entries in
each level exceeds a threshold. If so, we execute a
structure modification operation called a sequential

version split operation.

Input
Entry : Input entry which has key, timestamp,

Dead/Live flag and pointer to pages in next level
Root : TMVBT root which has a specific version

range, file descriptor and pointer information of the
current version
Run : Data structure that manages levels under

tree
Output none

1 InsertOperation to TMVBT
2 If [the number of TMVBT leaves exceeds a

sepecific constant value]
Then

3 RunMergeOperation(level 0 , level 1, Root);
/* level 0 is composed of TMVBT leaf nodes*/

4
5

6

InsertFenceOperation(Run)
If [CheckDeadEntryNumExceed() == true]
then
/* CheckDeadEntryNum() checks the sum of the

levels’ dead entries*/
 SequentialVersionSplitOperation(Root, Run);
end

 end

C. Search Operation
Each level is sorted by key-timestamp order. Basically,

entries in a level are sorted in key order. When entries
have the same keys, they are sorted in timestamp order. A
search operation is conducted sequentially from the root
of the head tree. The search operation tries to find the key
or the greatest fence value less than the desired key that
points to pages in the next level. When the fence is found,
the search operation continues in next level. When the key
is found, a binary search algorithm is used to find the
desired timestamp value. This process continues until the
desired key-version entry is found.

D. Merge Operation
The merge operation is the main operation of the Bulk

Split multiversion tree index. The process is performed on
two adjacent levels when the smaller one exceeds its size
limit. The operation sequentially scans two levels, and
combines them into one level to utilize the conventional
merge-sort algorithm. The operation compares the key
value and timestamp value of the two entries and arranges
them in ascending order.

We developed the existing FD-tree merge operation to
support the multiversion. Using a dead flag, we
implemented not only a physical deletion that actually
removes the entry but also a deletion by version update
that splits the version range. During the merge operation,
when two entries from different level have the same key,
we compare their timestamps and dead flags. The dead
flag stores the timestamp when an entry becomes dead. If
an entry in the smaller level which sets its dead flag meets
another entry in the bigger level with the same key value,
the dead flag of the entry in the bigger level is changed
with the one in the smaller level, and the smaller level
entry is not written to the new level. Increasing the
number of dead entries results in splitting the version
range. This variant of the merge operation enables us to
split the version range utilizing sequential I/O because
handling the dead entries is occurred in unit of level.
When live entries are separated from old and dead entries,
random writes that occur by inserting live entries are
transformed to sequential writes due to the structural
features. Under the maximum bandwidth of SSDs, the
merge operation utilizes the sequential reads and writes
with better performance than the conventional
multiversion B-tree.

Algorithm 2 MergeOperation(level 1, level 2, Root)

 Description
When the number of entries in specific level exceeds its
allowed size, it requires an operation to merge its data
with the data of the next level

 Input
level : Target levels of merge operation
Root : TMVBT root which has the specific version

range, file descriptor and pointer information of the
current version

 Output none

1
2

3
4
5

6
7

8

9
10

11

12

13

14
15
16

17

18
19
20

21

22
23

24

25

26

Entry p,q;
While (p != NULL && q!=NULL)
then

p = ReadEntryFrom(level 1);
q = ReadEntryFrom(level 2);
If [p.key > q.key]
then
 write q to L’ // L’ is new level to insert
 point to next entry of q in level 2
end
If [p.key < q.key]
then
 write p to L’
 point to next entry of p in Level 1
end
If [p.key == q.key]
then

If [p.timestamp > q.timestamp]
then
/*dead flag expresses when entry is dead*/

If [p.dead != 0] /* delete by delete operation*/
then

 q.dead = p.dead;
 write q to L’
 point to next entry of p,q in level 1, level 2

end
If [p.dead == 0] /* delete by version split */

 then
 q.dead = p.timestamp
 write q to L’
 point to next entry of p,q in level 1, level 2

end
end
If [p.timestamp == q.timestamp]
then

/* physically remove */
point to next entry of p,q in level 1, level2

end
end
If [L’ is full]

 then
 MergeOperation with next level

end
end
Replace L’ with level 2

E. Delete Operation
In contrast to the other operations, the delete operation

is simple. It starts by inserting an entry with a dead flag.
The dead flag is set to represent when the entry is dead. A
saved timestamp indicates when the delete operation
occurred. The delete operation is actually performed
during the merge operation. During the merge operation,
when two dead entries that have the same key meet each
other, the entry in the higher level is removed and the
other entry saves the higher-level entry’s dead flag in its
own flag. Thus, when we search the entry, we can tell that
the entry is dead and when it occurred.

F. Structure Modification Operation
The Structure-modification operation is necessary to

manage the version ranges and provide high concurrency
control in the multiversion tree. The main idea of the
operation is to make a data structure to manage
information, such as file descriptors and pointers to
eliminate additional writes that is necessary to preserve
the old version data. Flash memory has the feature of out-
of-place updates; a page cannot be overwritten and it
produces additional writes. For example, if one page is
updated by a transaction, it becomes two pages: an old
version page and a new version page. Even though the
multiversion database has many read-only transactions
and can access these old pages without additional write
operation, the conventional multiversion tree index does
not use the feature.

Thus, we propose to provide information about the file
descriptor and file pointer of a specific version range to
the root of the tree that represents a particular version. A
root structure uses the information to locate where the
levels and head tree are written in the file. If version
splitting is unnecessary, the levels and head tree are
overwritten at a previous location because the cost of the
version splitting is more crucial than the performance
benefit resulting from utilizing old pages. However, when
too many dead entries remain in the total structure,
version splitting is necessary. In this case, a new head tree
and new levels are appended to the back of the old head
tree and levels, and a new file pointer provided for a new
root structure. Because the size of each level is invariant,
appending and accessing levels or a head tree with
particular file pointer information is possible. After a new
root structure receives the file information, all live entries
in old version tree are inserted into a new tree
transforming random writes to sequential writes. Read
transactions can access the old pages by referencing the
file information in the old root without additional writes to
make a new level for the old data.

Algorithm 3 SequentialVersionSplitOperation (Root,
Run)

 Description
Increasing the number of dead entries in Sequential
Split multiversion tree requires a split oepration by
version range.

 Input
Root : TMVBT root which has specific version

range, file descriptor and pointer information of the
current version
Run : Data structure that manages the levels

under tree

 Output none
1

2

InsertNewRoot(newRoot);
/* create a new data structure which has a new file
descriptor, and pointer information of the current
version.*/
Insert all live entries in Root & Run to new Root
/* old version is preserved at the location which is
pointed to by the old Root structure*/
End

Level 0

Level 1

Level 2

Run headers that include
the number of dead entries

new versionold version

Root[0] Root[1]

Figure 5: Sequential Version Split operation. When dead
entries do not exceed a threshold, old version levels are
overwritten by the new version levels. When the dead
entries are enough to split, the old version levels are
preserved and the new version levels are appended to old
version levels.

IV. EXPERIMENT AND RESULT

In this section, we describe the evaluation of our Bulk
Split multiversion tree in comparison with the
transactional multiversion B-tree. We implemented
TMVBT and Bulk Split multiversion tree using Direct I/O,
and we experiment the performance of the tree with input
queries that is made virtually.
We ran our experiments on a computer with an Intel i7-
3770 quad core CPU 3.4GHz on CentOS 6.6 with 4GB
main memory and an OCZ Vector 120GB SSD.

We experiment the operation of the tree index using
Direct I/O. The size of one page was 4KB, and the size of
one entry was 24 bytes. We simulated the case of 1000
insertions in five transactions, 1000 insertions in eight
transactions and 1000 insertions in ten transactions. In the
case of TMVBT, raw flash memory cannot allow
overwrites so the split operations can affect more than
three pages (target page, created page, parent page). Even
when we only modify the key-value range in the header, it
requires additional page writes. Thus, when many data
inputs are inserted into TMVBT, a critical performance
issue results. Moreover, if the version was frequently
changed, too many version splits would occur, and require
many random writes. Figure 6 shows that the Bulk Split
multiversion tree is 1.1 - 1.3x faster than TMVBT in case
of insert operations. Figure 7 shows the experimental
result of execution time when the operations are
composed of inserts and deletes. Because it utilizes
sequential I/O, Bulk Split multiversion tree receives the
benefit of the performance. The number of data items in
one transaction and the number of version changes affect
the gap of performance between TMVBT and the Bulk
Split multiversion tree.

Moreover, Figure 8 shows that the operation time is
varied according to the number of leaves of head tree. The
more the number of leaves of tree is, the faster the
operation is. As the number of leaves increases, the tree
utilizes sequential I/O better. We experiment it with 1000
insertions in ten transactions.

Figure 6: Experimental result. The Y-axis shows the total
operation time, and the X-axis shows the type of queries
about insertions.

2.7

2.75

2.8

2.85

2.9

2.95

3

3.05

3.1

3.15

1000 inserts&deletes
in 8 transactions

1000 inserts&deletes
in 10 transactions

op
er

at
io

n
 t

im
e(

se
c)

Input data

TMVBT

BSMVBT

Figure 7: Experimental result. The Y-axis shows the total
operation time, and the X-axis shows the types of queries
about insertions and deletions.

Figure 8: Varying the number of Leaves of Head Tree in
case of 1000 inserts in ten transactions.

V. CONCLUSION AND FUTURE WORK

Previous multiversion index structures originally based
on hard disk drives generate too many random writes due
to their rearrangement of structure that is necessary to
balance the structure. Because SSDs have better
performance on sequential writes than random writes, the
multiversion index structure requires a new design to
improve overall performance. In this paper, we proposed a
multiversion index structure that utilizes key features of

SSDs (solid state drives). We designed our tree index with
methods of reducing slow random writes. We converted
the conventional index structure to utilize sequential
writes. Furthermore, we mitigated additional random
writes resulting from out-of-place update of SSD. Because
a multiversion database is assumed to have only one
update transaction and a few read-only transactions, we
can read access version data without additional structure
modification operations. As the SSD overwrite cost is
heavy, eliminating the cost of the version splits affects the
overall performance of the index structure.

We believe that it is possible to apply the proposed data
structure to practical systems. Moreover, it is possible to
extend our algorithm to exploit characteristics of the data
in specific system, such as location prediction system.
Furthermore, we will apply the index structure to flash
aware distributed database systems.

ACKNOWLEDGMENT

This research was supported by the Next-Generation
Information Computing Development Program through
the National Research Foundation of Korea (NRF),
funded by the Ministry of Science, ICT & Future Planning
(NRF-2015M3C4A7065522).

REFERENCES
[1] Becker, B., Gschwind, S., Ohler, T., Seeger, B., and Widmayer, P.

An asymptotically optimal multiversion B-tree. In VLDB Journal,
Dec.1996, vol. 5, no.4, pp. 264–275.

[2] Chazelle, B. and Guibas, L. J. Fractional cascading: I. a data
structuring technique. Algorithmica, 1(2), 1986

[3] Do, J., Zhang, D., Patel, J. M., DeWitt, D. J., Naughton, J. F. and
Halverson, A. Turbocharging DBMS Buffer Pool Using SSDs. In
SIGMOD, 2011

[4] Do, J., Zhang, D., Patel, J. M., DeWitt, D. J. Fast Peak-to-Peak
Behavior with SSD Buffer Pool. In ICDE, 2013

[5] Gal, E. and Toledo, S. Algorithms and data structures for flash
memories. In ACM Comput. Surv., 2005, vol. 37, no. 2, pp.138-
163

[6] Graefe, G. Write-optimized b-trees. In VLDB, 2004, pp. 672–683
[7] Haapasalo, T., Jaluta, I., Seeger, B., Sippu, S. and Soisalon-

Soininen, E., Transactions on the multiversion B+tree. In The 12th
International Conference on Extending Database Technology
(EDBT ’09), 2009.

[8] Kimura, K. and Kobayashi,T. Trends in high-density flash
memory technologies, In IEEE Conference on Electron Devices
and Solid-Sate Circuits, 2003.

[9] Li, X. et al. A new dynamic hash index for flash-based storage. In
WAIM, 2008

[10] Li, Y., He, B., Luo, Q., and Ke, Y. Tree indexing on solid state
drives. In Proceedings of VLDB Endowment 2010.

[11] O’Neil, P. E., Cheng, E., Gawlick, D. and ’Neil, E. J. The log-
structed merge-tree(lsm-tree). In Acta Inf., 1996, vol.33, no.4, pp.
351–385.

[12] Roh, H., Park, S., Lim, S., Shin, and Lee, S.-W. B+tree Index
Optimizations by Exploiting Internal Parallelism of Flash-based
Solid State Drives. In PVLDB 2012, vol. 5, no. 4, pp. 286–297.

[13] Stoica, R. and Ailamaki, A. Improving flash write performance by
using update frequency. In Proceedings of VLDB Endowment,
July 2013, 6(9):733–744.

[14] Thonangi, R., Babu, S., and Yang J. A practical concurrent index
for solid-state drive. In The International Conference on
Information and Knowledge Management (CIKM’12, 2012, pp.
1332–1341

