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An inverted index is a core data structure of Information Retrieval systems, especially in search
engines. Since the search environments have become more dynamic, many on-line index
maintenance strategies have been proposed. Previous strategies were designed for HDDs.
Consequently, in order to avoid expensive random access cost, Merge-based strategies have
been preferred to In-place index update strategies on HDDs. However, flashSSDs have become
solid alternatives to HDDs. FlashSSDs currently are adopted in awide range of areas due to their
superior features such as the short access latency, energy efficiency, and high bandwidth. In this
article, we first reexamined potentials of In-place index update strategies on flashSSDs. Thanks
to the insignificant access latency of flashSSDs, we discovered that In-place index update
strategies outperform Merge-based strategies, since In-place index update strategies generate
much less amount of I/O than Merge-based strategies despite inducing frequent random
accesses. Based on this discovery, we suggest a new inverted index maintenance strategy based
on an In-place index update strategy for flashSSDs, called Multipath Flash In-place Strategy
(MFIS). To enhance the index maintenance performance, MFIS stores the posting list of each
term non-contiguously and exploits the internal parallelism of flashSSDs. Thus, MFIS not only
induces the minimum amount of I/O but also utilizes the maximum bandwidth of flashSSDs.
Furthermore, MFIS is designed to show high query processing performance by utilizing the
internal parallelism of flashSSDs even though the posting list of each term is stored non-
contiguously. In our experiments, the index maintenance performance of MFIS was consider-
ably better than other previous maintenance strategies. The index maintenance performance
was up to 14.93, 4.04, 5.12, and 2.33 times higher than Merge-based strategies such as
Immediate Merge, Geometric Partitioning, Hybrid, and SSD-aware Hybrid, respectively. The
query processing performance of MFIS was up to 1.62 times higher than non-contiguous In-
place. In addition, MFIS showed almost the best query processing performance as Merge-based
strategies did. In conclusion, MFIS is the best on-line inverted index maintenance strategy on
flashSSDs in terms of both index maintenance and query processing performance.
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1. Introduction

In Information Retrieval (IR) systems, an inverted index is
used as a core data structure. It consists of a list of terms
(vocabulary) and a list of postings for each term (posting
list). Each posting contains term’s information such as
document ID and term frequency in the document. Many
studies have focused on maintaining the inverted index. It is
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Table 1
FlashSSD, HDD specification [36,18].

FlashSSD (P300)
HDD (Deskstar
7K1000.D)

Average access
latency

0.154 ms (read) 12.37 ms (read)
0.424 ms (write) 13.37 ms (write)

Sustained
transfer rate

360 MB/s (read)
189 MB/s

255 MB/s (write)
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Fig. 1. An illustration of internal architecture of flashSSDs.

2 The mapping is required because write operations to flashSSDs are
internally processed with out-place write operations (i.e. no direct
overwrites to flash memory pages) to the flash memory packages, due
to the erase-before-write feature of flash memory.
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essentially classified into off-line indexing strategies and on-
line indexing strategies. Since search environments have
become more dynamic, on-line indexing strategies have
been brought to more attention. Consequently, many on-
line indexing algorithms have been proposed in the recent
past. Classically, Re-build [29], Immediate Merge [27–29],
and In-place index update [28,45] strategies have been
introduced. More specifically, In-place index update strate-
gies can be generally classified into the contiguous In-place
and non-contiguous In-place index update strategies based
on how they store the posting list of each term. New Merge-
based strategies such as Logarithmic Merge [6], Geometric
Partitioning [26], and Horizontal Partitioning [17] have
emerged, which control periods of the merge operation.
These enhance the index maintenance performance by using
trade-offs with query processing performance. Additionally,
Hybrid strategies [7–9] were also proposed that blend Merge
and In-place index update strategies. The above strategies
focus on monotonically growing text collections that only
allow document insertions. In this article, we also focus on
maintaining the inverted index for document insertions,
which is a quite common restriction as shown in previous
studies [9,26,29,42,43,45].

The most important thing that we need to know about
the above algorithms is that they have been designed only
considering HDDs as storage for the inverted index. For this
reason, these algorithms have tried to gather posting lists of
each term in order to minimize the number of random
accesses to HDDs because of the long access latency of HDDs.
Merge-based strategies are considered the most efficient
algorithms for on-line indexing even though these strategies
have to read and write posting lists of all terms regardless of
whether they are required to be updated or not. In addition,
multiple inverted indexes need to be maintained. That is,
Merge-based strategies that prefer many sequential I/Os to
few random I/Os are suitable for HDDs.

However, In-place index update strategies only update
the posting lists of terms that exist in the in-memory onto
the on-disk inverted index. Therefore, In-place index
update strategies require considerably less amount of I/O
than Merge-based strategies require. Nevertheless, it has
been considered that In-place index update strategies are
not suitable for massive update of posting lists because of
numerous random accesses to HDDs. Therefore, very few
attempts have been made to develop an inverted index
maintenance strategy only based on In-place index update
strategies in recent years although Hybrid strategies com-
bine In-place index update strategies with Merge-based
strategies.

In the last few years, flashSSDs have been adopted as
main storage devices in a wide range of areas from laptop
computers to enterprise servers, thanks to their short
access latency, high bandwidth, and low power consump-
tion. Therefore, inverted index maintenance strategy also
needs to be redesigned according to the basic character-
istics of flashSSDs. To fully utilize flashSSDs, there are key
principles that have to be considered to design inverted
index maintenance strategy on flashSSDs.

First, inverted index maintenance strategy needs to be
designed to minimize the total amount of I/O without the
consideration of minimizing random access counts. The
most important feature of flashSSDs is their insignificant
access latency which is considerably shorter than that of
HDDs as presented in Table 1. This is because flashSSDs
have no mechanical part to move. Thus, the access latency
can be considered insignificant in I/O processing.

Second, inverted index maintenance strategy does not
need to avoid random writes to flashSSDs thanks to the
advanced FTL mapping technologies. FlashSSDs include FTL
(Flash Translation Layer) that maps LBAs (logical block
addresses) of the host to physical addresses of flash memory2.
State of the art FTL mapping technologies processes random
writes very efficiently with little write amplification inside
flashSSDs while early flashSSDs could not handle random-
write requests efficiently, thereby amplifying the amount of
writes actually written into flash memory. This further
emphasize that the inverted index design does not need to
be constrained by the I/O pattern.

Moreover, the internal I/O parallelism of flashSSDs has to
be exploited for better design of inverted indexes on
flashSSDs. flashSSDs have a new unique feature, the internal
parallelism [13], which has not been observed in HDDs. A
flashSSD embeds multiple flash memory packages each of
which is connected to each other through multiple channels
as depicted in Fig. 1. Due to this internal parallelism, multiple
I/O requests can be simultaneously processed spreading over
multiple flash memory packages inside the flashSSD. The
maximum bandwidth of the flashSSD is nearly equal to the
total sum of the bandwidths of the embedded flash memory
packages. Therefore, unless a number of I/O requests are
delivered to the flashSSD at the same time, the full bandwidth
of the flashSSD cannot be exploited.



W. Jung et al. / Information Systems 49 (2015) 25–39 27
Therefore, general principles to design I/O bound algo-
rithms for flashSSDs are as follows. First, minimize the total
amount of I/O rather than minimize the total number of
random accesses. Due to the insignificant access latency and
the advance of FTL technologies, the amount of I/O deter-
mines the performance of the I/O bound algorithms. Second,
exploit the internal parallelism by delivering a number of I/O
requests to flashSSDs simultaneously [41].

In this respect, In-place index update strategies have
more potential on flashSSDs than on HDDs because they
need considerably less amount of I/O than Merge-based
strategies during indexing.

In this article, we first verify our conjecture that In-place
index update strategies will be better than Merge-based
strategies on flashSSDs. Then, we propose a novel inverted
index maintenance strategy, called Multipath Flash In-place
Strategy (MFIS) which not only requires the minimum amount
of I/O but also exploits the internal parallelism of flashSSDs.
When the in-memory inverted index is combined with the
on-disk inverted index, MFIS reads the last blocks of postings
lists into memory from a flashSSD simultaneously rather than
reads one by one. Then, updated posting lists are written back
to the flashSSD again from memory at the same time. The
posting list of each term is allowed to be stored non-
contiguously to minimize the amount of I/O. In the query
processing of MFIS, non-contiguously stored posting list is read
at once to increase the number of I/O requests to flashSSDs.

To verify our conjecture, we experimentally evaluated the
performance of In-place index update strategies with a
representative Merge-based strategy on a HDD [18] and a
flashSSD (ioDrive [16]). In the index maintenance perfor-
mance, while Geometric Partitioning was extremely faster
than contiguous In-place and non-contiguous In-place (27.47
and 26.74 times, respectively) on the HDD, In-place index
update strategies were faster than Geometric Partitioning
(1.27 and 1.49 times, respectively) on the flashSSD. Specifi-
cally, non-contiguous In-place was 1.17 times faster than
contiguous In-place in the index maintenance performance.
In contrast, non-contiguous In-place was 3.88 times slower
than contiguous In-place in the query processing perfor-
mance on the flashSSD. This is because non-contiguous In-
place reads scattered postings without exploiting the inter-
nal parallelism of flashSSDs.

We empirically evaluated the index maintenance and
query processing performance of MFIS. The experiments
were conducted on three different flashSSDs (ioDrive [16],
Vertex3 [37], and P300 [36]). The result showed that the
index maintenance of MFIS was up to 14.93, 4.04, 5.12, and
2.33 times faster than Merge-based strategies such as
Immediate Merge, Geometric Partitioning, Hybrid, and
SSD-aware Hybrid, respectively. MFIS was up to 3.78 and
2.27 times faster on indexing than traditional In-place
index update strategies such as contiguous In-place and
non-contiguous In-place, respectively. MFIS showed up to
1.71 times higher query processing performance than non-
contiguous In-place. Furthermore, it showed almost the
best query processing performance as Immediate Merge
did. In addition, it demonstrated slightly faster query
processing performance than Geometric Partitioning,
Hybrid, and SSD-aware Hybrid (on average 1.05, 1.07, and
1.09 times, respectively).
There are three contributions of this article. First, we have
made a discovery that In-place index update strategies can
be better than Merge-based strategies on flashSSDs, which is
contrary to the long held belief that In-place index update
strategies show poor index maintenance performance in
most cases. Second, we proposed the best inverted index
maintenance strategy for flashSSDs. Our method not only
considerably outperformed the existing strategies in the
index maintenance performance, but also it showed nearly
the best query processing performance which was slightly
better or nearly the same as the performance of existing
strategies such as Immediate Merge, Geometric Partitioning,
Hybrid, SSD-aware Hybrid, and In-place index update stra-
tegies on flashSSDs. To the best of our knowledge, MFIS is the
first inverted index maintenance strategy based on In-place
index update strategy for flashSSDs.

This article is organized as follows. Section 2 describes the
advance of FTL technologies with its implication in write
amplification factor, the importance of exploiting internal
parallelism of flashSSDs, and also provide background on
diverse inverted index maintenance strategies. In Section 3,
we revisit In-place index update strategies. We introduce our
new inverted index maintenance strategy for flashSSDs in
Section 4. We evaluate our algorithm through experiments
with three flashSSDs in Section 5. We describe related work
in Section 6. Section 7 concludes our work.

2. Background

2.1. FlashSSD architecture

Fig. 1 illustrates the architecture of a flashSSD, which is
composed of multiple flash memory packages. More pre-
cisely, n flash memory packages are gathered into a
channel and m channels are connected to a SSD controller,
which includes a CPU processor and a RAM buffer. Since
flashSSDs have no mechanical part to move contrarily to
HDDs, no mechanical movement overheads such as seek
or rotational delays exist. Therefore, access latencies of
flashSSDs are considerably shorter than those of HDDs. For
the example of devices used in our empirical study, the
average access latencies of P300 flashSSD is 80.32 (read)
and 31.53 (write) times shorter than those of the Deskstar
7K1000.D HDD (refer to Table 1 for the details).

2.2. Advance of FTL technologies and write amplification

FlashSSDs include FTL (Flash Translation Layer) that maps
LBAs (logical block addresses) of the host to physical
addresses of flash memory. The mapping is required because
write operations to flashSSDs are internally processed with
out-place write operations (i.e. no direct overwrites to flash
memory pages) to the flash memory packages, due to the
erase-before-write feature of flash memory. FTL mapping
methods and associated background operations such as
garbage collection and wear leveling have been a major
research topic by previous studies [21–24,32,33,38] for the
last decade. Since FTL mapping methods and associated
background algorithms have been key factors of flashSSD
performance, manufacturers were reluctant to reveal their
methods and algorithms. However, numerous FTL mapping
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algorithms have been proposed in the research domain and
manufacturers have adopted proposed methods and made
them more sophisticated to commercialize them. One of the
major performance measures in FTL mapping methods is
write amplification factor (WAF) which is the ratio of the data
written by the host to the data written to the flash memory.
This is a crucial factor for the FTL performance since it can
determine the lifetime of flashSSDs. The flash memory has
the limited number of erases for each block. Therefore, the
higher WAF, the shorter lifetime of the flashSSD. FTL map-
ping methods have evolved by reducing mapping granularity
from block-level mapping to page-level mapping, thereby
reducing the write amplification factor. Due to the large
mapping granularity, block level mapping was prone to
small-sized random writes, causing very high WAF values.
Then, hybrid mapping methods such as BAST [22] and FAST
[23] were proposed, which commonly adopts log-blocks that
temporarily hold the data of updated pages. With the advent
of hybrid mapping methods, the internal write overhead
caused by small sized random writes was alleviated, and
thus WAF values could be significantly reduced. Later, many
variants of these hybrid mapping methods such as Superb-
lock FTL [21], and SAST [38], LAST [24] were proposed.
Recently, a feasible page-level mapping method [33] was
proposed which was considered to be the smallest mapping
granularity. Most recently, object-level mapping method
OFTL [32], which has even less mapping granularity than
the page-level mapping, has been proposed. OFTL claims to
have 0.19�0.89 WAF values. The FTL technologies have been
substantially enhanced in both research domain and indus-
try. Recent benchmark results [3,4] based on SMART [2] logs
reported that recent commercial flashSSDs such as Samsung
840 EVO and Intel SSD 520 have WAF values that range from
0.17 to 2.9.

2.3. Importance of exploiting internal parallelism of
flashSSDs

Because of the embedded multiple flash memory
packages, flashSSDs have the internal parallelism. Multiple
I/O requests can be simultaneously performed on the m
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Fig. 2. Benchmark results of the read performance with Psyn
flash memory packages through multiple channels. This is
referred to as channel-level parallelism [13]. Additionally,
multiple I/O data transfers can be interleaved even in a
single channel among the n flash memory packages
ganged into the channel. While some of the flash memory
packages are busy with their own I/O processing, I/O data
transfers to the other flash memory packages can be done
in the shared channel. The pages of the flash memory
packages that share the same channel are usually striped,
thus making a larger I/O unit. This is referred to as
package-level parallelism [13]. Therefore, a flashSSD can
theoretically have the maximum bandwidth as high asm∙n
times the bandwidth of a flash memory package.

In order to utilize the maximum bandwidth of a
flashSSD, it is required to exploit the internal parallelism.
Unless I/O requests with large amount of I/O are delivered
to flashSSDs at the same time, some of the flash memory
packages can become idle. There are two general princi-
ples to exploit the internal parallelism of flashSSDs [41].
First, in order to exploit the channel-level parallelism,
request multiple I/O requests (especially random I/Os) at
once. In this way, multiple channels can deliver at once
the I/O requests to multiple flash memory packages
connected to the channels. Second, in order to exploit
the package-level parallelism, request I/Os with large
granularity (large I/O sizes). This can make the flash
memory packages, which shares the same channel, busy.
Moreover, this can make the designated blocks for the I/O
requests spread over more flash memory packages across
the channels.

In order to apply the first principle, it is needed to request
multiple I/Os at once. A recent study [41] suggested a new I/O
request method called Psync I/O (Parallel Synchronous I/O),
which can deliver multiple random I/Os at once to a flashSSD
with a single request in a single process (or a thread). Psync
I/O is similar to traditional synchronous I/O except that Psync
I/O uses an array of I/O requests as a unit of its operation. It
delivers the array of I/O requests to the flashSSDs and
retrieves the request results at once. Another array of I/O
requests can be submitted in sequence only after the results
of the previous I/O requests are retrieved.
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To investigate the performance of Psync I/O, we con-
ducted benchmarks to measure read bandwidths of Psync
I/O on three flashSSDs (ioDrive [16], Vertex3 [37], and
P300 [36]). The devices used for the benchmarks were
described in Section 5.1. Psync I/O was implemented by
using the Linux-native asynchronous API (libaio) [5] as
described in [41]. We measured the read bandwidths
increasing the number of random I/Os requested at once
through Psync I/O (outstanding I/O level) from 1 to 512
with the I/O size fixed. We repeated the same benchmark,
increasing the I/O size from 4KB to 2048KB. In order to
compare the performance of Psync I/O with that of
synchronous I/O, when the outstanding I/O level was 1,
the I/O was requested using synchronous I/O with the
corresponding I/O size. Fig. 2 presents this result. Higher
outstanding I/O level created higher bandwidths. In addi-
tion, larger granularity of I/O generated higher band-
widths. It is worth noting that even with small gran-
ularity the bandwidths of flashSSDs converged close to
the maximum bandwidths when the outstanding I/O level
was high enough (e.g. when the outstanding I/O level was
512 with the I/O size of 16KB on ioDrive). In general, when
Psync I/O was performed with N outstanding I/O level and
S KB size, it generated almost the same bandwidth as a
single I/O with the I/O size of N∙S KB. For example, when
the outstanding I/O level was 8 with the I/O size of 128KB,
the bandwidth (336.52MB/s) was almost the same as the
bandwidth (337.22MB/s) of a single synchronous I/O with
the I/O size of 1024KB on Vertex3.

2.4. On-line maintenance strategies

Prior to explanation of indexing strategies, we first
introduce the process of how new documents are inverted
into an index. The IR system tokenizes the input docu-
ments forming a lexicographically ordered list of terms
called the vocabulary and a list of postings (called posting
list) corresponding to each term. Each posting contains
term’s information such as document ID, which is the
unique number of the document containing the term, term
frequency in the document, and a position list of the term
within the document. An in-memory inverted index is
updated in main memory until it becomes full. Once the
main memory is fully filled, the in-memory inverted index
is moved to HDDs, and then combined with the on-disk
inverted index. Query requests can be served during the
index maintenance process in on-line indexing strategies.

2.4.1. Merge-based maintenance
Merge-based strategies maintain the on-disk inverted

index by merging the in-memory posting lists with the on-
disk posting lists. During the merge process, the in-
memory posting lists are checked to determine whether
they have to be updated with existing on-disk posting lists.
By checking both the on-disk terms and the in-memory
terms, the posting lists of terms that only exist in memory
are written to the new on-disk index and the posting lists
of terms that only exist on the on-disk index are read from
the old on-disk index and re-written to the new on-disk
index. The posting lists of terms that exist both on the on-
disk and in-memory index are merged and re-written to
the new on-disk index. This strategy also requires keeping
a copy of the old on-disk index to deal with query
processing during the merge process.

Several studies have been made to improve on-line
indexing strategies based on the Merge strategy. No-Merge
[6] performs no merge operation when the in-memory
index is moved to HDDs. Instead, it creates a new on-disk
index called sub-index. Therefore, it shows high index
maintenance performance and poor query processing
performance since it requires at most n disk seeks to read
a posting list for a given term, where n is the number of
sub-indexes. Immediate Merge [27–29] is an extreme case
optimized for query processing performance that performs
merge operation whenever the in-memory index is moved
to HDDs. Immediate Merge shows high query processing
performance because only one on-disk index is main-
tained, and the posting list of each term is stored con-
tiguously. However, the index maintenance performance
worsens as the size of index grows since the entire index
has to be read and the whole updated index needs to be
written for every merge. To balance index maintenance
and query processing performance, several algorithms
have been proposed. For example, both Logarithmic Merge
[6] and Geometric Partitioning [26] aim to increase index
maintenance performance by allowing multiple on-disk
sub-indexes and periodically performing the merge opera-
tion. Instead of merging whenever the in-memory index is
moved to HDDs, these strategies perform the merge
operation at their specific conditions. In Geometric Parti-
tioning, each partition includes a sub-index. Each partition
only contains no more than the defined number of max-
imum postings. Parameter r is used to define the capacity
of postings on each partition. If the in-memory index can
hold b postings, ðr�1Þrðk�1Þb postings can be included in
the kth partition. When a newly generated index leads to
more than ðr�1Þrðk�1Þb postings in kth partition, the new
index is merged with the existing old index and moved to
the kþ1th partition. This is iterated until there are no more
excess of postings on the corresponding partition. Loga-
rithmic Merge introduces the concept of “generation”
instead of “partition”. If there are two sub-indexes on the
same generation g, they are merged, and then moved to
generation gþ1. This merge process is repeated until no
more collisions occur on generations. Despite the
enhanced index maintenance performance, these methods
still have the drawback of seeking multiple sub-indexes in
query processing.

2.4.2. In-place index update
In-place index update strategies [28,42,45] do not read

posting lists of terms, which do not exist in the in-memory
index. When the in-memory index is combined with the on-
disk index, the posting list of each term is appended to the
free space for the posting list of the corresponding term.
Unless the corresponding term exists on the on-disk index,
the term is inserted into the vocabulary, and posting list is
appended to the end of the inverted index file. Since In-place
index update strategies require no read and write for
unrelated posting lists, the total amount of I/O for the index
maintenance is lower than for other approaches. However,
since updates of posting lists are conducted term by term, it
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leads to numerous random I/Os, which are very slow on
HDDs because of the expensive access cost of HDDs.

In-place index update strategies can be generally clas-
sified into the contiguous In-place [28] and non-
contiguous In-place [45] strategies according to how the
posting list of each term is stored on-disk index. To
contiguously store the posting list, when the free space
of a term is insufficient for new postings of the term,
relocation is occurred (contiguous In-place). Relocation
reads all the old postings of a term from the on-disk index,
appends new postings, and writes the integrated posting
list to the free space of the on-disk index. When the
integrated posting list is written, the free space of this
term is over-allocated for future incoming postings. Sev-
eral over-allocation policies [28,42,45] were proposed.
Proportional over-allocation [45] allocates k∙s space for a
posting list where k is the proportional over-allocation
factor and s is the size of an integrated posting list.
Consequently, contiguous In-place has overheads such as
additional seek time, I/Os for relocation, and the wasted
space for over-allocation. On the other hand, the posting
list can be stored non-contiguously without relocation
(non-contiguous In-place). Instead of relocating the old
posting list, only new postings are written to the end of
the on-disk index. Since non-contiguous In-place does not
need relocation, it requires less amount of I/O than con-
tiguous In-place. Therefore, it has the advantage over
contiguous In-place in the index maintenance perfor-
mance. However, since the postings of each term are
scattered in the inverted index, it leads to numerous disk
seeks for even a single query, which only contains a single
term as a keyword. Consequently, it causes the degrada-
tion of query processing performance.

There are some variations of In-place index update
strategy such as including short posting lists within the
vocabulary [15], predictive over-allocation for long posting
lists to alleviate relocation [42], and using a “bucket”
structure to handle short posting lists while long posting
lists are maintained using various criteria [43,45].

2.4.3. Hybrid
Hybrid strategies [7–9] are a mixture of Merge and

In-place index update strategies. The idea is based on
separating short posting lists and long posting lists. Short
posting lists are updated according to Merge-based strate-
gies, whereas long posting lists are updated with In-place
index update strategies. This is because In-place index
update strategies show better index maintenance perfor-
mance when the long posting list is updated, whereas
Merge-based strategies show better index maintenance
performance when the short posting list is updated [7–9].
This difference comes from HDDs’ random access latency. If
numerous postings are read to be updated with a single
random access, the random access latency is a relatively
small cost compared to the transfer time needed for the large
set of postings. In contrast, random accesses are considered a
relatively heavy overhead when only few postings are read
from the on-disk index to be updated. This is because the
random access latency dominates the transfer time needed
for the small set of postings. Therefore, maintaining long
posting lists by In-place index update strategies is preferred
even though In-place index update strategies cause a ran-
dom access for reading and writing a posting list of each
term. On the other hand, maintaining short posting lists by
Merge-based strategies is preferred, since Merge-based stra-
tegies are not negatively influenced by the random access.

3. Rediscovery of in-place index update strategy

In-place index update strategies have been regarded as
the most inefficient maintenance approach when the HDDs
are used for main storage of the inverted index [29]. This is
because numerous random accesses occur during indexing
since it has to first find the location of the posting list where
new postings are appended for each term. These random
accesses can cause performance degradation on HDDs
because of long access latency of HDDs (refer to Table 1 in
Section 1). For this reason, most of the index maintenance
strategies are developed based on the Merge-based strategy
in order to avoid random accesses.

However, on flashSSDs, the overhead that results from
random access can be ignored since the access latency of
flashSSDs is insignificant. Therefore, In-place index update
strategies can be the most suitable maintenance strategy on
flashSSDs. In-place index update strategies have advantages
over other strategies. First of all, In-place index update
strategies only consider posting lists of terms that exist in
the in-memory inverted index. In other words, it eliminates
the overhead that is caused by unnecessary read and write of
posting lists that do not reside in the in-memory index.
However, In-place index update strategies cause a random
read each time when the posting list of the term is loaded to
memory and a random write when the updated posting list
is written again to the on-disk index. For this reason, In-place
index update strategies are not considered an appropriate
method to deal with large volume documents on HDDs.
However, since the cost of random access is insignificant on
flashSSDs, random accesses to update posting list are not a
significant overhead cost for flashSSDs.

To verify our conjecture, we evaluated the performance
of In-place index update strategies with a representative
Merge-based strategy on a HDD (7200 rpm Hitachi Deskstar
7K1000.D [18]) and a flashSSD (ioDrive [16]). We measured
the total indexing time when the in-memory inverted
indexes are moved to the HDD or flashSSD. Each in-
memory inverted index was built with 1,000 documents.
Once an in-memory index was combined with the on-disk
index, 10,000 queries were performed to measure query
processing performance. During the experiment, a total of
100 in-memory indexes were moved to the HDD or
flashSSD. In other words, 100,000 documents were indexed
into the inverted index. More details of the experimental
settings can be found in Section 5.1. As described in Section
2.4.2, depending on the manner of maintaining posting
lists, In-place index update strategies were implemented in
two ways [45]: 1) contiguous In-place (In-place_C) with
k¼1.25 (the proportional over-allocation factor described in
Section 2.4.2) and 2) non-contiguous In-place (In-place_NC).
Non-contiguous structure introduced in [45] as an extreme
allocation policy for long posting lists optimized for index
maintenance performance. In this article, to demonstrate
the superiority of non-contiguous structure in the index
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maintenance performance, the posting list of each term is
stored non-contiguously regardless of length of posting
lists. When the space of a posting list is not enough for
new postings, non-contiguous In-place stores new postings
at the end of the on-disk index instead of relocation. As a
representative Merge-based strategy, Geometric Partition-
ing (Geo) was used, which is one of the most suitable
Merge-based maintenance strategies for HDDs. Geo was
implemented based on the descriptions in their paper [26].
According to their paper, 3 was chosen for parameter r. As a
lower boundary of indexing time, No-Merge (No_Merge) [3]
that creates a new index for each flush was chosen.

Fig. 3(a) presents the total indexing time on the HDD.
Geo and No_Merge showed extremely better index main-
tenance performance than both In-place index update
strategies. Geo was 26.74X and 27.47X faster than In-
place_NC and In-place_C, respectively. No-Merge was
172.04X and 176.73X faster than In-place_NC and In-
place_C. As depicted in Fig. 3(b), however, In-place index
update strategies showed better index maintenance per-
formance on the flashSSD. In-place_NC and In-place_C was
1.49X and 1.27X faster than Geo. The gap of performance
among In-place_NC, In-place_C, and Geo was increased as
the size of the index grows. No_Merge was 2.22X and
2.68X faster than In-place_NC and In-place_C, respectively.
Although No_Merge still showed the fastest update perfor-
mance, this result contradicts the common wisdom that
the In-place index update strategy is the slowest approach
among the inverted index maintenance strategies.

This phenomenon is due to the minimal access latency of
flashSSDs. Fig. 3(c) presents the total amount of I/O of each
strategy, suggesting how the access cost affects index main-
tenance performance. As shown in Fig. 3(c), In-place index
update strategies required less amount of I/O than Geo during
indexing. Especially the amount of written data of In-
place_NC is about four times less than that of Geo. This is
because In-place index update strategies only updated terms
that existed in the in-memory index. Nevertheless, it took
more indexing time on the HDD because of the long access
latency of the HDD (refer to Table 1 in Section 1). Since
posting lists of terms to be updated were scattered in the on-
disk index, numerous random accesses were occurred. How-
ever, on flashSSDs, thanks to the negligible access latency of
flashSSDs, In-place index update strategies outperformed Geo.
Specifically, In-place_NC showed better index maintenance
performance than In-place_C. This is because In-place_C has
the relocation overhead as described in Section 2.4.2.
Although the relocation did not occur many times with small
dataset (100,000 documents), the significant overhead of
relocation can be examined as the size of index grows (refer
to the experiment with large dataset in Section 5.1). However,
considering the high gap between the amount of I/O of Geo
and In-place_NC (about a factor of 3), the indexing time gap
between Geo and In-place_NC is relatively small (about a
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factor of 1.5). This can be explained by the assumption that
random I/Os created by In-place_NC could not utilize the
internal parallelism of flashSSDs enough and could worsen
the write amplification factor due to random writes.

Fig. 3(d) presents query processing performance on the
flashSSD. In-place_NC showed considerably longer query time
than Geo and In-place_C. In-place_NC was on average 2.80X
(Min: 1.54X, Max: 3.85X) and 3.88X (Min: 2.20X, Max: 5.13X)
slower than Geo and In-place_C, respectively. The performance
gap was steadily increased. Since the posting list of a term is
not stored contiguously, a number of random reads are
required for even a single query, which only contains a single
term as a keyword. Since the random reads are requested one
by one with small I/O sizes in In-place_NC, the full bandwidth
of flashSSDs cannot be utilized since the internal parallelism
can be exploited only if there is enough amount of I/O
requested at once as we mentioned in Section 2.3. In contrast,
since In-place_C and Geo store the posting list of each term
contiguously, the whole postings of each term are read with
larger I/O sizes, thereby utilizing higher bandwidth of flashSSDs
than In-place_NC. No_Merge showed extremely slow query
performance compared to other strategies. No_Merge was on
average 13.73X (Min: 8.12X, Max: 18.06X), 11.37X (Min: 5.77X,
Max: 17.15X) and 2.96X (Min: 2.23X, Max: 4.55X) slower than
In-place_C, Geo, and In-place_NC. Since No_Merge approach do
not merge with existing on-disk indexes while In-place_NC
appends new postings to the end of the existing posting if pre-
allocated space has enough space, No_Merge generates more
random accesses for query processing than In-place_NC does.
Therefore, No_Merge cannot be an appropriate update strategy
even though it shows the best update performance.

In conclusion, we discovered that In-place index update
strategies have the potential to be better update strategy than
Merge-based strategies in the index maintenance performance
on flashSSDs especially when the posting list of each term is
stored non-contiguously. Due to the insignificant access
latency of flashSSDs and the minimum amount of I/O written
during indexing, non-contiguous In-place showed the best
index maintenance performance. Nevertheless, it still does not
utilize the maximum bandwidth of flashSSD in indexing and
query processing, due to no consideration of exploiting the
internal parallelism of flashSSDs and the overhead of write
amplification worsened by randomwrites. In the experiments,
this problem was more clearly revealed in query processing.
Since query processing performance of non-contiguous In-
place was much worse than the others, non-contiguous In-
place cannot be a choice for one of the practical solutions on
flashSSDs without enhancing query processing performance.

To address this problem and maximize the performance
of index maintenance and query processing, we design a
new inverted index maintenance strategy that exploits the
internal parallelism of flashSSDs, thereby utilizing the max-
imum bandwidth of flashSSDs in both indexing and query
processing. For the write amplification problemworsened by
random writes, we rely on FTL mapping technologies that
have evolved significantly. The state of the art FTL mapping
technologies alleviate our concerns since they have already
achieved to sustain the write amplification factors under 1
even with an extreme workload including only random
writes. The benchmark results of recent commercial
flashSSDs (WAFs ranging from 0.17 to 2.9) demonstrate this
as mentioned in Section 2.3. Note that the write amplifica-
tion in the host system for Geo, a factor of 4, dominates the
write amplification inside a flashSSD for In-place NC, a factor
of 0.17 to 2.9, since the amount of written data of Geo is
about four times more than that of In-place_NC.

4. Multipath flash in-place strategy (MFIS)

We propose a novel inverted index maintenance strategy
for flashSSDs, called Multipath Flash In-place Strategy (MFIS).
There are two key ideas. One is to non-contiguously maintain
a posting list of each term in order to minimize the total
amount of I/O when the in-memory index is combined with
the on-disk index. The other is to utilize Psync I/O (refer to
Section 2.3) in order to request multiple I/Os at the same time
when the posting lists are read and written on flashSSDs,
thereby exploiting the internal parallelism of flashSSDs.

4.1. Data structure

In this article, a unit of the on-disk inverted index is a
block. The block contains multiple postings. A set of sequen-
tially located blocks composes a chunk. As shown in Fig. 4,
there are postings of “Term 1” on Block1 and Block2. A chunk
of “Term 1” consists of Block1 and Block2. Postings are stored
in ascending order of document ID within blocks. We assume
that each document ID is assigned in order of entry into the
IR system. This order is maintained even after posting lists
are updated. In this article, the block size of MFIS is fixed at
8KB that can contain 1022 postings at most. As shown in
Fig. 2(Section 2.3), larger granularity of I/O generated higher
bandwidths. If the size of block is too small, it is hard to
utilize the maximum bandwidth of flashSSDs. On the other
hand, if the size of block is too large, it leads to the internal
fragmentation in the block, which only has small number of
postings. Therefore, 8KB is not only enough to generate the
maximum bandwidth of flashSSDs through Psync I/O and
also to minimize the internal fragmentation in the block.

4.2. Index maintenance of MFIS

The index maintenance process of MFIS is composed of
three phases: Scan, Migration, and Write.

First, in the Scan phase (lines 13–18 of Algorithm 1),
terms built in the in-memory inverted index and terms
stored on the on-disk inverted index are scanned. Postings
of terms that only exist in the in-memory inverted index
are moved to the output buffer (line 16). Meanwhile, the
last blocks of posting lists to be updated are read to the
input buffer from the on-disk inverted index. To read many
blocks at once, the read operations for the multiple desired
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blocks are performed through a single Psync I/O request
(lines 4, 9). By using this method, we can utilize the
maximum read bandwidth of flashSSDs. As described in
Section 2.3, requesting multiple I/O at the same time
generates higher read bandwidth in flashSSDs. Therefore,
Scan phase increases the performance the algorithm rather
than reading blocks term by term. For the example of Fig. 5
(a), postings of “Term 3” are moved to the output buffer
since “Term 3” only exists in the in-memory index. On the
other hand, the last blocks of “Term 1”, ”Term 2”, and
“Term 6” are loaded to the input buffer simultaneously
through Psync I/O. Scanning the terms continues until the
input buffer is fully filled with blocks at the defined
number of maximum blocks (threshold) of the input buffer.

Algorithm 1:. Index Maintenance of MFIS

Procedure MFIS_UPDATE(V,P,InputMax)
Input: V(vocabulary), P(set of posting lists), InputMax(the threshold

of InputBuffer)
1: for each term t in V do
2: Scan(t, P(t), t.lbp)
3: if (r_point.size 4¼ QUOTE InputMax) then

/*r_point[] : array of locations of blocks to be read from
flashSSDs*/

4: PsyncRead(InputBuffer[], r_point[])
5: for each block ib in InputBuffer[] do
6: Migration(ib, ib.term, ib.obp)
7: Write()
8: if(r_point.size !¼0) then
9: PsyncRead(InputBuffer[], r_point[])
10: for each block ib in InputBuffer[] do
11: Migration(ib, ib.term, ib.obp)
12: Write()
function Scan(t, P(t), t.lbp)
Input : t (term to be scanned) , P(t) (posting list of term t) , t.lbp (the
location of last block on flashSSDs of term t)

13: if t exists both on-disk and in-memory index then
14: r_point[i_indexþþ] :¼ t.lbp
15: else if t only exists in-memory then
16: N :¼ move(P(t), OutputBuffer[o_index])
17: for i :¼ 0 to N-1 step 1 do

/*w_point[] : array of locations of blocks to be written to
flashSSDs, eof : the location of the end of file*/

18: w_point[o_indexþþ] :¼eofþ i
function Migration(ib, ib.term, ib.obp)
Input: ib (a block in InputBuffer[]) , ib.term (term of block ib), ib.obp
(ib’s original block location on flashSSDs)

19: move(ib, OutputBuffer[o_index])
20: posting_list :¼ getPostingList(ib.term)
21: size :¼ append(posting_list, OutputBuffer[o_index])
22: for i :¼ 0 to size-1 step 1 do
23: if i ¼ 0 then
24: w_point[o_indexþþ] :¼ ib.obp
25: else
26: w_point[o_indexþþ] :¼eofþ i
function Write()
27: PsyncWrite(w_point[])
28: Reset r_point[], w_point[] , o_index :¼ i_index :¼ 0
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Second, in the Migration phase (lines 19–26), new

postings are appended to empty spaces of the correspond-
ing loaded blocks (line 21) after the postings in the input
buffer are migrated to the output buffer (line 19). New
blocks are allocated for new postings in case loaded blocks
do not have enough space to hold the postings. Fig. 5(b)
shows how old postings of “Term 1”, ”Term 2”, and “Term
6” are combined with new postings. In this example, we
assume each block contains at most five postings. For this
reason, new blocks are allocated for “Term 1” and “Term 6”
at 3rd and 6th of the output buffer, respectively.

Finally, after the whole postings of terms are appended,
loaded blocks are re-written simultaneously to flashSSDs
where the blocks have existed, in the Write phase (lines
27, 28). When new blocks are allocated, they are written to
the end of the inverted index file. These write operations
are conducted at once through Psync I/O (line 27). Similar
to Scan phase, writing numerous blocks at the same time
also makes it possible to exploit the internal parallelism of
flashSSDs. As described in Section 2.3, since flashSSDs have
the embedded multiple flash memory packages, request-
ing multiple I/O increases update performance of the
algorithm rather than writing blocks term by term. As
shown in Fig. 5(c), the 1st, 3rd, and 6th blocks of the output
buffer are written to the end of the on-disk index file. In
contrast, the 2nd, 4th, and 5th blocks are re-written to the
locations where they came from. To write the blocks from
the output buffer at once, Psync I/O is used.

Algorithm 2:. Query Processing of MFIS

Procedure MFIS_SEARCH(Term, InputMax)
Input: Term(a term of query), InputMax(the threshold of

InputBuffer)
//CP[] : array of location and size of chunks

1: CP[] :¼ Vocabulary.find(Term)
2: i_index :¼ 0
3: for each chunk c in CP[] do

/*r_point[] : array of locations of blocks to be read from
flashSSDs*/

4: if(r_point.size 4¼ InputMax) then
5: PsyncRead(r_point[], InputBuffer[])
6: i_index :¼ 0

/*c.numBlks : the number of blocks in a chunk c, c.pos : the start
location of the chunk c */

7: for i :¼0 to c.numBlks-1 step 1 do
8: r_point[i_indexþþ] :¼c.pos þ i
9:if(r_point.size !¼0) then
10: PsyncRead(r_point[],InputBuffer[])

In summary, MFIS begins from the Scan phase to find
the last blocks of terms to be updated (line 2). Once the
number of the found last blocks reaches the threshold of
the input buffer (line 3), MFIS reads these blocks at the
same time through Psync I/O (line 4). After reading the last
blocks, MFIS conducts the Migration process to merge the
old postings, which are read from the on-disk index, with
new postings (lines 5, 6), and then performs the Write
process to update the on-disk index (line 7). These
processes are repeated until all terms are scanned from
the on-disk and the in-memory index.
4.3. Query processing of MFIS

MFIS maintains a non-contiguous posting list for each
term in an on-disk inverted index. In other words, the
blocks that contain the posting list of the term are not
contiguously stored in the on-disk index. For example, as
shown in Fig. 5(c), chunks of blocks are stored non-
contiguously. The 1st block of “Term1” is adjacent to the
2nd block of “Term 1”whereas the 3rd block is located away
from the first two blocks. Even though this approach has
the benefit to index maintenance performance, it induces
random reads with the block size (8KB in this article)
during query processing. Although, random reads on
flashSSDs are considerably faster than HDDs due to the
insignificant access latencies, small sized reads cannot
utilize the full bandwidth of flashSSDs. This is because
the I/O pattern that synchronously request random reads
with small I/O sizes one by one cannot provide enough
amount of I/O for flashSSDs to exploit the internal paralle-
lism as we described in Section 2.3. Therefore without a
more advanced query processing method, the query pro-
cessing performance will be worse than other inverted
index maintenance strategies that store the posting list
contiguously. For example, the query processing of naïve
non-contiguous In-place was considerably slower than
that of the Merge-based approach in Section 3.

To address this problem, MFIS reads all chunks of the
posting list for a given term through Psync I/O simulta-
neously. It searches the vocabulary using a term as a key in
the given query. The vocabulary returns a set of locations
of chunks for the given term (line 1 of Algorithm 2). By
using the set of locations, MFIS reads desired chunks at the
same time rather than reads the chunks one by one (lines
5, 10). Since MFIS can read the desired chunks through a
single Psync I/O request, MFIS can exploit the maximum
bandwidth of flashSSDs in query processing as well.

Fig. 5(d) shows an example of query processing of MFIS.
The example assumes that the on-disk index is now a state
after several updates were performed. It also assumes that
“Term 1” is included in a user query. Because chunks of
“Term 1” are not stored contiguously, four random reads
are needed to read four chunks for the query. The chunks
of “Term 1” are read at once through Psync I/O instead of
reading them chunk by chunk.

As a variation of MFIS_SEARCH, it can be modified to
operate with a set of terms instead of a single term. When
a user query contains multiple terms, modified MFIS_-
SEARCH can read chunks of multiple terms simultaneously
instead of term by term.

5. Experimental results

5.1. Experimental setting

System setup: All experiments were performed on a
Linux machine with a 6-core 3.2 GHz CPU and 16 GB DDR3
RAM. In addition, direct I/O mode was adopted for the I/O
requests to bypass the file system cache.

Devices: We carefully chose three recent flashSSDs;
Fusion-io ioDrive high-priced enterprised-level SSD [16],
OCZ Vertex3 max IOPS a consumer-level SSD [37], and
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(Section 5).

W. Jung et al. / Information Systems 49 (2015) 25–39 35
micron P300 an enterprise-level SSD [36] to demonstrate
that our algorithm generates performance gains for both
index maintenance and query processing regardless of the
type of flashSSDs.

Datasets: To evaluate the index maintenance perfor-
mance, the Wikipedia Static HTML Dump [46] was used as
a data set. It consists of 6.5 million documents with a total
size of 105GB. The collection is free and is often used as the
dataset to measure the inverted index maintenance perfor-
mance since it is comparable in size to TREC GOV2. The term
distribution of 100,000 documents that were used in Section
3 is shown in Fig. 6(a). Similarly, Fig. 6(b) also shows term
distribution that follows the Zipf distribution. In other
words, the small number of terms contains the majority of
postings in the inverted index. To simulate the real world
query, we used the AOL query log [1,40]. In Section 3, we
only randomly picked up 10,000 queries from the AOL query
log. On the other hand, in Section 5, we composed 10,000
queries with the ratio of 70%/30% (long posting list/short
posting list) to measure average time per query on SSD-
aware Hybrid strategy [30]. We also conducted query
processing for each strategy by using the 10,000 queries,
which were used for SSD-aware Hybrid strategy.

Implementation details: Throughout all experiments in
Section 5, the size of block that contains postings, which is
described in Section 4.1, was set at 8KB that can contain
1022 postings at most. To measure indexing time and query
processing time simultaneously, we created a sequence of
about 20,000 documents insertions and 10,000 queries.
Once an in-memory inverted index was built with about
20,000 documents and combined with the on-disk inverted
index, query processing was performed. In total, 100 in-
memory indexes were moved to flashSSDs in this experi-
ment. In other words, about two million documents were
inverted into the index during one million queries.

5.2. Index maintenance performance

5.2.1. Total indexing time
In this section, we evaluate the total indexing time of MFIS

on three flashSSDs. In this experiment, the defined number of
maximum blocks (threshold) of the input buffer was configured
to be 1024. MFIS was evaluated with Immediate Merge (IM)
[29], Geometric Partitioning (Geo) [26], In-place (contiguous
In-place: In-place_C, non-contiguous In-place: In-place_NC)
[45], Hybrid (HLM_NC) [9], No-Merge (No_Merge)[3], and
SSD-aware Hybrid (SSD_Hybrid) [30].IM was implemented by
reading entire on-disk index and merging with new in-
memory index for every flush. To implement In-place_C, the
proportional over-allocation factor k, which is described in
Section 2.4.2, was set at 1.25. In-place_NCwas used to describe
the superiority of non-contiguous structure in the index
maintenance performance. In-place_NC stores new postings
at the end of the on-disk index without relocation if the space
of a posting list is not enough for new postings. We chose Geo
as a representative Merge-based strategy. During the experi-
ment, the parameter r, which is used to define the capacity of
postings on each partition, was initialized to 3. HLM_NC was
implemented by blending Logarithmic Merge and non-
contiguous In-place, which shows better index maintenance
performance than other family of Hybrid strategies. According
to the paper of HLM_NC, we chose the long posting list
threshold values T as 1,000,000. SSD_Hybrid is an SSD-aware
Merge-based update strategy, which applies No_Merge for
short posting lists and IM for long posting lists. We regarded
as the long posting lists that have more than 10,000 postings
during each flush of in-memory index. No_Merge, which
creates a new index for each flush, was used as a lower
boundary of indexing time.

Fig. 7 presents the total indexing time of the inverted
indexes with different strategies. The y-axis indicates the
total time taken to combine the N in-memory inverted
indexes with the existing on-disk inverted index where N
is the number of flushes (x-axis) of the in-memory index.
Table 2 indicates how many times MFIS was faster than
other strategies. MFIS always outperformed the other
strategies in the index maintenance performance on three
flashSSDs except No_Merge, which is the lower boundary
of the indexing time.

There are several reasons for this result. First, this is
because MFIS requires less amount of I/O than IM, Geo,
HLM_NC, SSD_Hybrid, and In-place_C. Since access latency is
insignificant on flashSSDs, the amount of I/O is an important
factor of the index maintenance performance. MFIS only
handles posting lists, which are required to be updated,
while Merge-based strategies such as IM, Geo, HLM_NC, and
SSD_Hybrid read and re-write unrelated posting lists of
terms to maintain contiguous posting lists regardless of
whether terms need to be updated or not. Although
In-place_C also only handles posting lists, which need to
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Table 2
Index maintenance performance gain ratios.

ioDrive Vertex3 P300

In-place_NC 1.63 1.88 2.27
IM 11.20 14.93 14.65
Geo (r¼3) 2.47 3.07 4.04
In-place_C (k¼1.25) 3.10 3.65 3.78
HLM_NC 2.75 3.38 5.12
SSD_Hybrid 1.86 2.13 2.33
No_Merge 0.80 0.73 0.57
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be updated, In-place_C generates more amount of I/O than
MFIS because of relocation. Second, since MFIS can utilize the
internal parallelism of flashSSDs, it outperforms In-place_NC.
Although In-place_NC also requires same amount of I/O with
MFIS, In-place_NC updates posting lists term by term. How-
ever, MFIS reads and writes posting lists of terms at the same
time through Psync I/O. As described in Section 2.3, request-
ing multiple I/Os simultaneously to flashSSDs can exploit
considerably higher bandwidth of flashSSDs than requesting
one by one. Although SSD_Hybrid showed higher perfor-
mance compared to traditional strategies such as IM, Geo,
and HLM_NC, which are not designed for flashSSDs, MFIS
was faster than SSD_Hybrid. This is because SSD_Hybrid treats
long posting list by IM, which increases total number of I/O.
5.2.2. Experiment for the threshold of the input buffer
To evaluate the effect of the threshold of the input

buffer on MFIS, we measured the total indexing time while
100 in-memory indexes moved to flashSSDs varying the
threshold of the input buffer from 2 to 1024 on the ioDrive,
Vertex3, and P300 flashSSDs.

As shown in Fig. 7(d), there were similar tendencies
regardless of type of flashSSDs. As the threshold of the
input buffer increased, the total indexing time steadily
decreased. This is because MFIS could read and write more
blocks at the same time through Psync I/O as the threshold
value was increased. Fig. 7(d) also showed that the index
maintenance performance was very little changed from
when the threshold value was greater than 32. This
indicates that the 32 threshold is sufficient to utilize the
maximum bandwidth of the flashSSDs regardless of type
of flashSSDs.

5.3. Query processing performance

In this section, we evaluate the query processing
performance of MFIS with a set of 10,000 queries from
the AOL query log. Each query set was performed after an
in-memory inverted index was combined with the on-disk
inverted index. We measured the average time per query
to retrieve posting lists of given terms of 10,000 queries.
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Since postings of each term are stored contiguously in IM
and In-place_C, we only show the query processing result
of In-place_C. No_Merge was used as an upper boundary of
query processing. Although some caching [34,35] techni-
ques have been proposed to increase query performance,
we did not consider caching effects in experiments.
Additionally, we followed standard ranking techniques
that return documents containing the identical terms with
queries without query expansion [10,12].

As shown in Fig. 8, the average time per query of all the
methods was increased as the size of index increased.
No_Merge and In-place_NC showed slow query processing
performance on three flashSSDs. On the other hand, MFIS
showed similar query times compared to In-place_C, Geo,
HLM_NC, and SSD_Hybrid. The query processing of MFIS
was on average 1.47X, 1.62X, and 1.54X faster than that of
In-place_NC on the ioDrive, Vertex3, and P300 flashSSDs,
respectively. Meanwhile, the query processing of MFIS was
on average 1.05X, 1.07X, and 1.09X faster than that of Geo,
HLM_NC, and SSD_Hybrid on three flashSSDs, respectively.

MFIS showed considerably enhanced query processing
performance compared to In-place_NC. This is because
MFIS reads a number of non-contiguous chunks for a
posting list at the same time through Psync I/O while
In-place_NC reads chunk by chunk with synchronous I/O.
According to the benchmark result in Section 2.3, we
confirmed why reading chunks simultaneously was faster
than chunk by chunk. As shown in Fig. 2, flashSSDs
showed higher read bandwidths with higher outstanding
I/O levels. In other words, MFIS generated higher out-
standing I/O levels so that MFIS could search more quickly
utilizing higher read bandwidths.

It is worth noting that MFIS shows almost the same query
processing performance compared to In-place_C. Additionally,
MFIS was slightly faster than Geo, HLM_NC, and SSD_Hybrid.
The results have a connection with the following reason.

MFIS uses granularity of I/O that is large enough to
exploit the internal parallelism of flashSSDs by binding
contiguous blocks into a chunk. It affects to the read
bandwidth of Psync I/O. As shown in Fig. 2, the larger
granularity of I/O (large I/O sizes) was used, the bandwidth
reached to the maximum bandwidth with less number of
I/Os requested at the same time (less outstanding I/O level).
However, in case of very small granularity of I/O, the
bandwidth could not reach to the maximum bandwidth
even with a very high outstanding I/O level. When MFIS
allocates new blocks of postings for a term during the
Migration phase, those blocks were stored at the end of
index contiguously during the Write phase. For example, the
size of a chunk for terms, which were frequent on the query
set, on average was 120KB, which contains 15 blocks. There-
fore, MFIS used larger granularity for Pysnc I/O, thus enabling
MFIS to exploit the maximum bandwidth of flashSSDs.

6. Related work

Recently, several studies tried to use a flash memory as
storage for the inverted index. An early study [44] designed
a search system suitable for small devices using the flash
memory as its storage. Additionally, a similar study [11]
proposed an inverted index structure for NAND flash mem-
ory, which is usually used for small mobile devices. Aside
from these studies, Bojun et al. [20] have suggested allocat-
ing the flash memory space as much as possible of the
DRAM portion for the inverted index. For the flashSSDs, a
study [30] suggested a merge-based hybrid inverted index
maintenance strategy by applying No-Merge for short post-
ing lists and Immediate Merge for long posting lists. To the
best of our knowledge, there has been no study to design
flashSSDs-aware inverted index maintenance strategy based
on In-place index update strategy.

Data management methods for flashSSDs are more
actively studied by the database community. An early
study [25] focused on addressing random write problems
associated with the first generation of flashSSDs. The
authors focused on reducing the number of write opera-
tions to flashSSDs. Several flashSSD-oriented index struc-
tures were proposed [31,41]. FD-tree [31] focused on
exploiting the high bandwidth of flashSSDs by converting
random I/Os into sequential I/Os. PIO B-tree [41] focused
on exploiting the internal parallelism of flashSSDs.

While early studies paid less attention to the parallel
architectures of flashSSDs, a recent study [13] claimed that
exploiting the internal parallelism of flashSSDs can consider-
ably enhance the performance of I/O bound applications.
Other studies [19,39] tried to improve the internal architecture
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for nourishing more I/O parallelism inside flashSSDs. In the
studies, they noted that channel-level parallelism is a core of
the I/O parallelism inside flashSSDs. The most recent study
[41] suggested an efficient I/O request method (Psync I/O) for
submitting random I/Os at once in a single process, which
focused on exploiting the channel-level parallelism.

7. Conclusion and discussion

In this article, we rediscovered the potential of In-place
index update strategies on flashSSDs. Especially, non-
contiguous In-place strategy outperformed Merge-based
strategies and even contiguous In-place strategy by elim-
inating overheads such as re-location and proportional
over-allocation. However, non-contiguous In-place strat-
egy does not fully utilize the maximum bandwidth of
flashSSDs. More importantly, the query processing perfor-
mance can be degraded because of the non-contiguously
stored posting list. To fully utilize the maximum band-
width of flashSSDs, and address the degraded query
processing performance, we proposed a novel inverted
index maintenance strategy that exploits the internal
parallelism of flashSSDs, namely Multipath Flash In-place
Strategy (MFIS). MFIS enhances the index maintenance
performance by reading and writing posting lists, which
need to be updated, at the same time through Psync I/O. In
addition, MFIS addresses the structural problem of non-
contiguous posting lists by exploiting the internal paralle-
lism of flashSSDs. In the experimental result, MFIS was up
to 14.93, 4.04, 5.12, and 2.33 times faster than Immediate
Merge, Geometric Partitioning, Hybrid, and SSD-aware
Hybrid, respectively. Furthermore, MFIS was up to 3.78
and 2.27 times faster than contiguous In-place and non-
contiguous In-place, respectively. MFIS showed up to 1.62
times higher query processing performance than non-
contiguous In-place. MFIS even showed on average 1.05,
1.07, and 1.09 times faster query processing performance
compared to Geometric Partitioning, Hybrid, and SSD-
aware Hybrid, respectively.

Although we only consider the situation when the
postings list is sorted by increasing document ID, MFIS can
be extended to handle to maintain other particular orders
such as term frequency and impact. In Scanning Phase,
which is explained in Section 4, MFIS can be modified to
read an entire posting list of the corresponding term rather
than the last block. Even though this modified MFIS
becomes slower than original MFIS, which only reads the
last block of posting lists, it has still advantage over Merge-
based strategy in terms of update performance thanks to
less amount of I/O. However, since both term frequency-
ordered and impact-ordered indexes have disadvantages
on Boolean queries and index updates [47], documents-
ordered index is preferred depending on the purpose of
applications. In our experiments, we restricted to scenario
that is only adding new documents without deletion and
modification of previous documents, which is common
restriction in this fields [9,26,29,42,43,45]. Even though this
assumption does not fully reflect the reality of environment
of search engines, some garbage collection policies such as
[6,14] can be combined to support deletion and modification
of documents.
Acknowledgments

This work was supported by the National Research
Foundation of Korea (NRF) grant funded by the Korea
government (MSIP)(NRF-2012R1A2A1A01010775).

References

[1] AOL Query Dataset 2006. 〈http://research.aol.com〉 (inactive), 〈http://
www.gregsadetsky.com/aol-data/〉 (an alternative data source link).

[2] ATA/ATAPI Command Set (ATA8-ACS). 〈ftp://ftp.t10.org/t13/docs2004/
D1699-ATA8-ACS.pdf〉.

[3] Endurance Testing the Samsung 840 EVO SSD. 〈http://ssdenduran
cetest.com/ssd-endurance-test-report/Samsung-840-EVO-120〉.

[4] Intel SSD 520 Review. 〈http://www.tomshardware.com/reviews/
ssd-520-sandforce-review-benchmark,3124-11.html〉.

[5] libaio. 〈http://lse.sourceforge.net/io/aio.html〉.
[6] S. Büttcher, C.L.A. Clarke, Indexing time vs. query time: trade-offs in

dynamic information retrieval systems (Citeseer), Conference on
Information and Knowledge Management: Proceedings of the Four-
teenth ACM International Conference on Information and Knowl-
edge Management (2005) 317–318.

[7] S. Büttcher, C.L.A. Clarke, A hybrid approach to index maintenance in
dynamic text retrieval systems, Proceedings of the Twenty eighth
European conference on Advances in Information Retrieval (2006)
229–240.

[8] S. Büttcher, C.L.A. Clarke, Hybrid index maintenance for contiguous
inverted lists, Inform. Retrieval 11 (3) (2008) 175–207.

[9] S. Büttcher, C.L.A. Clarke, B. Lushman, Hybrid index maintenance for
growing text collections, Proceedings of the Twenty nineth Annual
International ACM SIGIR Conference on Research and Development
in Information Retrieval, ACM (2006) 356–363.

[10] B. Billerbeck, J. Zobel, Efficient query expansion with auxiliary data
structures, Inform. Syst 31 (7) (2006) 573–584.

[11] Z. Cao, S. Zhou, K. Li, Y. Liu, Flashsearch: document searching in small
mobile device, in: Business and Information Management, 2008.
ISBIM'08, International Seminar on, IEEE (2008) 79–82.

[12] C. Carpineto, R.D. Mori, G. Romano, B. Bigi, An information-theoretic
approach to automatic query expansion, ACM T. Inform. Syst 19 (1)
(2001) 1–27.

[13] F. Chen, R. Lee, X. Zhang, Essential roles of exploiting internal
parallelism of flash memory based solid state drives in high-speed
data processing, in: High Performance Computer Architecture
(HPCA), 2011 IEEE Seventeenth International Symposium on, IEEE
(2011) 266–277.

[14] T.-C. Chiueh, L. Huang, Efficient real-time index updates in text retrieval
systems, Technical report, Experimental Computer Systems Lab, Depart-
ment of Computer Science, State University of New, Citeseer, 1999.

[15] D. Cutting, J. Pedersen, Optimization for dynamic inverted index
maintenance, Proceedings of the Thirteenth Annual International
ACM SIGIR Conference on Research and Development in Information
Retrieval, ACM (1989) 405–411.

[16] Fusion-Io, ioDrive Specification (2013). 〈http://www.fusionio.com/
load/-media-/1ufytn/docsLibrary/FIO_DS_ioDrive.pdf〉.

[17] S. Gurajada, On-line index maintenance using horizontal partition-
ing, Proceedings of the Eighteenth ACM Conference on Information
and Knowledge Management, ACM (2009) 435–444.

[18] Hitachi, Hitachi. Deskstart 7K1000.D. 〈http://www.hgst.com/tech/
techlib.nsf/techdocs/93DC192B5F7C2A6188257913006C2535/$file/
7K1000.D_OEMspec_v1.0.pdf〉.

[19] Y. Hu, H. Jiang, D. Feng, L. Tian, H. Luo, S. Zhang, Performance impact
and interplay of SSD parallelism through advanced commands,
allocation strategy and data granularity, Proceedings of the Interna-
tional Conference on Supercomputing, ACM (2011) 96–107.

[20] B. Huang, Z. Xia, Allocating inverted index into flash memory for
search engines (pp), Proceedings of the Twentieth International
Conference Companion on World Wide Web, ACM (2011) 61–62.

[21] J.-U. Kang, H. Jo, J.-S. Kim, J. Lee, A superblock-based flash translation
layer for NAND flash memory, Proceedings of the Sixth ACM & IEEE
International Conference on Embedded Software, ACM (2006)
161–170.

[22] J. Kim, J.M. Kim, S.H. Noh, S.L. Min, Y. Cho, A space-efficient flash
translation layer for compactflash systems, IEEE T. Consum. Electr.
48 (2) (2002) 366–375.

http://research.aol.com
http://www.gregsadetsky.com/aol-data/
http://www.gregsadetsky.com/aol-data/
ftp://ftp.t10.org/t13/docs2004/D1699-ATA8-ACS.pdf
ftp://ftp.t10.org/t13/docs2004/D1699-ATA8-ACS.pdf
http://ssdendurancetest.com/ssd-endurance-test-report/Samsung-840-EVO-120
http://ssdendurancetest.com/ssd-endurance-test-report/Samsung-840-EVO-120
http://www.tomshardware.com/reviews/ssd-520-sandforce-review-benchmark,3124-11.html
http://www.tomshardware.com/reviews/ssd-520-sandforce-review-benchmark,3124-11.html
http://lse.sourceforge.net/io/aio.html
http://refhub.elsevier.com/S0306-4379(14)00180-X/sbref1
http://refhub.elsevier.com/S0306-4379(14)00180-X/sbref1
http://refhub.elsevier.com/S0306-4379(14)00180-X/sbref1
http://refhub.elsevier.com/S0306-4379(14)00180-X/sbref1
http://refhub.elsevier.com/S0306-4379(14)00180-X/sbref1
http://refhub.elsevier.com/S0306-4379(14)00180-X/sbref2
http://refhub.elsevier.com/S0306-4379(14)00180-X/sbref2
http://refhub.elsevier.com/S0306-4379(14)00180-X/sbref2
http://refhub.elsevier.com/S0306-4379(14)00180-X/sbref2
http://refhub.elsevier.com/S0306-4379(14)00180-X/sbref3
http://refhub.elsevier.com/S0306-4379(14)00180-X/sbref3
http://refhub.elsevier.com/S0306-4379(14)00180-X/sbref4
http://refhub.elsevier.com/S0306-4379(14)00180-X/sbref4
http://refhub.elsevier.com/S0306-4379(14)00180-X/sbref4
http://refhub.elsevier.com/S0306-4379(14)00180-X/sbref4
http://refhub.elsevier.com/S0306-4379(14)00180-X/sbref5
http://refhub.elsevier.com/S0306-4379(14)00180-X/sbref5
http://refhub.elsevier.com/S0306-4379(14)00180-X/sbref6
http://refhub.elsevier.com/S0306-4379(14)00180-X/sbref6
http://refhub.elsevier.com/S0306-4379(14)00180-X/sbref6
http://refhub.elsevier.com/S0306-4379(14)00180-X/sbref7
http://refhub.elsevier.com/S0306-4379(14)00180-X/sbref7
http://refhub.elsevier.com/S0306-4379(14)00180-X/sbref7
http://refhub.elsevier.com/S0306-4379(14)00180-X/sbref8
http://refhub.elsevier.com/S0306-4379(14)00180-X/sbref8
http://refhub.elsevier.com/S0306-4379(14)00180-X/sbref8
http://refhub.elsevier.com/S0306-4379(14)00180-X/sbref8
http://refhub.elsevier.com/S0306-4379(14)00180-X/sbref8
http://refhub.elsevier.com/S0306-4379(14)00180-X/sbref9
http://refhub.elsevier.com/S0306-4379(14)00180-X/sbref9
http://refhub.elsevier.com/S0306-4379(14)00180-X/sbref9
http://refhub.elsevier.com/S0306-4379(14)00180-X/sbref9
http://www.fusionio.com/load/-media-/1ufytn/docsLibrary/FIO_DS_ioDrive.pdf
http://www.fusionio.com/load/-media-/1ufytn/docsLibrary/FIO_DS_ioDrive.pdf
http://refhub.elsevier.com/S0306-4379(14)00180-X/sbref10
http://refhub.elsevier.com/S0306-4379(14)00180-X/sbref10
http://refhub.elsevier.com/S0306-4379(14)00180-X/sbref10
http://www.hgst.com/tech/techlib.nsf/techdocs/93DC192B5F7C2A6188257913006C2535/$file/7K1000.D_OEMspec_v1.0.pdf
http://www.hgst.com/tech/techlib.nsf/techdocs/93DC192B5F7C2A6188257913006C2535/$file/7K1000.D_OEMspec_v1.0.pdf
http://www.hgst.com/tech/techlib.nsf/techdocs/93DC192B5F7C2A6188257913006C2535/$file/7K1000.D_OEMspec_v1.0.pdf
http://refhub.elsevier.com/S0306-4379(14)00180-X/sbref11
http://refhub.elsevier.com/S0306-4379(14)00180-X/sbref11
http://refhub.elsevier.com/S0306-4379(14)00180-X/sbref11
http://refhub.elsevier.com/S0306-4379(14)00180-X/sbref11
http://refhub.elsevier.com/S0306-4379(14)00180-X/sbref12
http://refhub.elsevier.com/S0306-4379(14)00180-X/sbref12
http://refhub.elsevier.com/S0306-4379(14)00180-X/sbref12
http://refhub.elsevier.com/S0306-4379(14)00180-X/sbref13
http://refhub.elsevier.com/S0306-4379(14)00180-X/sbref13
http://refhub.elsevier.com/S0306-4379(14)00180-X/sbref13
http://refhub.elsevier.com/S0306-4379(14)00180-X/sbref13
http://refhub.elsevier.com/S0306-4379(14)00180-X/sbref13
http://refhub.elsevier.com/S0306-4379(14)00180-X/sbref14
http://refhub.elsevier.com/S0306-4379(14)00180-X/sbref14
http://refhub.elsevier.com/S0306-4379(14)00180-X/sbref14


W. Jung et al. / Information Systems 49 (2015) 25–39 39
[23] S.-W. Lee, D.-J. Park, T.-S. Chung, D.-H. Lee, S. Park, H.-J. Song, A log
buffer-based flash translation layer using fully-associative sector
translation, ACM T. Embedded Comput. Syst. (TECS) 6 (3) (2007) 18.

[24] S. Lee, D. Shin, Y.-J. Kim, J. Kim, LAST: locality-aware sector transla-
tion for NAND flash memory-based storage systems, ACM SIGOPS
Operating Syst. Rev 42 (6) (2008) 36–42.

[25] S.W. Lee, B. Moon, Design of flash-based DBMS: an in-page logging
approach, International Conference on Management of Data: Pro-
ceedings of the 2007 ACM SIGMOD International Conference on
Management of Data (2007) 55–66.

[26] N. Lester, A. Moffat, J. Zobel, Fast on-line index construction by
geometric partitioning, Conference on Information and Knowledge
Management: Proceedings of the Fourteenth ACM International
Conference on Information and Knowledge Management (2005)
776–783.

[27] N. Lester, A. Moffat, J. Zobel, Efficient online index construction for
text databases, ACM T. Database Syst 33 (3) (2008) 1–33.

[28] N. Lester, J. Zobel, H. Williams, Efficient online index maintenance
for contiguous inverted lists, Inform. Process. Manag 42 (4) (2006)
916–933.

[29] N. Lester, J. Zobel, H.E. Williams, In-place versus re-build versus re-
merge: index maintenance strategies for text retrieval systems,
Proceedings of the Twenty Seventh Australasian Conference on
Computer Science-Volume 26 (2004) 15–23. (Australian Computer
Society, Inc.).

[30] R. Li, X. Chen, C. Li, X. Gu, K. Wen, Efficient online index maintenance
for SSD-based information retrieval systems, High Performance
Computing and Communication & 2012 IEEE Nineth International
Conference on Embedded Software and Systems (HPCC-ICESS), 2012
IEEE 14th International Conference on, IEEE (2012) 262–269.

[31] Y. Li, B. He, R.J. Yang, Q. Luo, K. Yi, Tree indexing on solid state drives,
P. VLDB Endow 3 (1-2) (2010) 1195–1206.

[32] Y. Lu, J. Shu, W. Zheng, S. Li, Extending the lifetime of flash-based
storage through reducing write amplification from file systems (pp),
Proceedings of the USENIX Conference on File and Storage Technol-
ogies (FAST) (2013) 257–270.

[33] D. Ma, J. Feng, G. Li, LazyFTL: a page-level flash translation layer
optimized for NAND flash memory, Proceedings of the 2011 ACM
SIGMOD International Conference on Management of Data, ACM
(2011) 1–12.
[34] T.P. Martin, I.A. Macleod, J.I. Russell, K. Leese, B. Foster, A case study
of caching strategies for a distributed full text retrieval system,
Inform. Process. Manag 26 (2) (1990) 227–247.

[35] T.P. Martin, J.I. Russell, Data caching strategies for distributed full
text retrieval systems, Inform. Syst 16 (1) (1991) 1–11.

[36] Micron, P300. 〈http://www.micron.com/�/media/Documents/Pro
ducts/Data%20Sheet/SSD/p300_2_5.pdf〉.

[37] Ocz, Vertex3 Max IOPS. 〈http://www.ocztechnology.com/res/man
uals/OCZ_Vertex3_MAX_IOPS_Product_sheet.pdf〉.

[38] C. Park, W. Cheon, J. Kang, K. Roh, W. Cho, J.-S. Kim, A reconfigurable FTL
(flash translation layer) architecture for NAND flash-based applications,
ACM T. Embedded Comput. Syst. (TECS) 7 (4) (2008) 38.

[39] S. Park, E. Seo, J.Y. Shin, S. Maeng, J. Lee, Exploiting internal
parallelism of flash-based SSDs, Comput. Archit. Lett 9 (1) (2010)
9–12.

[40] G. Pass, A. Chowdhury, C. Torgeson, A picture of search (Citeseer),
Proceedings of the First International Conference on Scalable Infor-
mation Systems (2006) 1.

[41] H. Roh, S. Park, S. Kim, M. Shin, S.-W. Lee, Bþ-tree index optimiza-
tion by exploiting internal parallelism of flash-based solid state
drives, P. VLDB Endow 5 (4) (2011) 286–297.

[42] W.Y. Shieh, C.P. Chung, A statistics-based approach to incrementally
update inverted files, Inform. Process. Manag 41 (2) (2005) 275–288.

[43] K. Shoens, A. Tomasic, H. Garcia-Molina, Synthetic workload perfor-
mance analysis of incremental updates (Springer-Verlag New York,
Inc.), Proceedings of the Seventeenth Annual International ACM
SIGIR Conference on Research and Development in Information
Retrieval (1994) 329–338.

[44] C. Tan, B. Sheng, H. Wang, Q. Li, Microsearch: when search engines
meet small devices, Proceedings of the Sixth International Confer-
ence, Pervasive Comput. (2008) 93–110.

[45] A. Tomasic, H. Garcia-Molina, K. Shoens, Incremental updates of
inverted lists for text document retrieval, in: Proceedings of the
1994 ACM SIGMOD International Conference on Management of
data, ACM, 1994, pp. 289–300.

[46] Wikipedia, Static Data set. dumps.wikimedia.org.
[47] J. Zobel, A. Moffat, Inverted files for text search engines, ACM

Comput. Surv. (CSUR) 38 (2) (2006) 6.

http://refhub.elsevier.com/S0306-4379(14)00180-X/sbref15
http://refhub.elsevier.com/S0306-4379(14)00180-X/sbref15
http://refhub.elsevier.com/S0306-4379(14)00180-X/sbref15
http://refhub.elsevier.com/S0306-4379(14)00180-X/sbref16
http://refhub.elsevier.com/S0306-4379(14)00180-X/sbref16
http://refhub.elsevier.com/S0306-4379(14)00180-X/sbref16
http://refhub.elsevier.com/S0306-4379(14)00180-X/sbref17
http://refhub.elsevier.com/S0306-4379(14)00180-X/sbref17
http://refhub.elsevier.com/S0306-4379(14)00180-X/sbref17
http://refhub.elsevier.com/S0306-4379(14)00180-X/sbref17
http://refhub.elsevier.com/S0306-4379(14)00180-X/sbref18
http://refhub.elsevier.com/S0306-4379(14)00180-X/sbref18
http://refhub.elsevier.com/S0306-4379(14)00180-X/sbref18
http://refhub.elsevier.com/S0306-4379(14)00180-X/sbref18
http://refhub.elsevier.com/S0306-4379(14)00180-X/sbref18
http://refhub.elsevier.com/S0306-4379(14)00180-X/sbref19
http://refhub.elsevier.com/S0306-4379(14)00180-X/sbref19
http://refhub.elsevier.com/S0306-4379(14)00180-X/sbref20
http://refhub.elsevier.com/S0306-4379(14)00180-X/sbref20
http://refhub.elsevier.com/S0306-4379(14)00180-X/sbref20
http://refhub.elsevier.com/S0306-4379(14)00180-X/sbref21
http://refhub.elsevier.com/S0306-4379(14)00180-X/sbref21
http://refhub.elsevier.com/S0306-4379(14)00180-X/sbref21
http://refhub.elsevier.com/S0306-4379(14)00180-X/sbref21
http://refhub.elsevier.com/S0306-4379(14)00180-X/sbref21
http://refhub.elsevier.com/S0306-4379(14)00180-X/sbref22
http://refhub.elsevier.com/S0306-4379(14)00180-X/sbref22
http://refhub.elsevier.com/S0306-4379(14)00180-X/sbref22
http://refhub.elsevier.com/S0306-4379(14)00180-X/sbref22
http://refhub.elsevier.com/S0306-4379(14)00180-X/sbref22
http://refhub.elsevier.com/S0306-4379(14)00180-X/sbref22
http://refhub.elsevier.com/S0306-4379(14)00180-X/sbref23
http://refhub.elsevier.com/S0306-4379(14)00180-X/sbref23
http://refhub.elsevier.com/S0306-4379(14)00180-X/sbref24
http://refhub.elsevier.com/S0306-4379(14)00180-X/sbref24
http://refhub.elsevier.com/S0306-4379(14)00180-X/sbref24
http://refhub.elsevier.com/S0306-4379(14)00180-X/sbref24
http://refhub.elsevier.com/S0306-4379(14)00180-X/sbref25
http://refhub.elsevier.com/S0306-4379(14)00180-X/sbref25
http://refhub.elsevier.com/S0306-4379(14)00180-X/sbref25
http://refhub.elsevier.com/S0306-4379(14)00180-X/sbref25
http://refhub.elsevier.com/S0306-4379(14)00180-X/sbref26
http://refhub.elsevier.com/S0306-4379(14)00180-X/sbref26
http://refhub.elsevier.com/S0306-4379(14)00180-X/sbref26
http://refhub.elsevier.com/S0306-4379(14)00180-X/sbref27
http://refhub.elsevier.com/S0306-4379(14)00180-X/sbref27
http://www.micron.com/~/media/Documents/Products/Data%20Sheet/SSD/p300_2_5.pdf
http://www.micron.com/~/media/Documents/Products/Data%20Sheet/SSD/p300_2_5.pdf
http://www.micron.com/~/media/Documents/Products/Data%20Sheet/SSD/p300_2_5.pdf
http://www.ocztechnology.com/res/manuals/OCZ_Vertex3_MAX_IOPS_Product_sheet.pdf
http://www.ocztechnology.com/res/manuals/OCZ_Vertex3_MAX_IOPS_Product_sheet.pdf
http://refhub.elsevier.com/S0306-4379(14)00180-X/sbref28
http://refhub.elsevier.com/S0306-4379(14)00180-X/sbref28
http://refhub.elsevier.com/S0306-4379(14)00180-X/sbref28
http://refhub.elsevier.com/S0306-4379(14)00180-X/sbref29
http://refhub.elsevier.com/S0306-4379(14)00180-X/sbref29
http://refhub.elsevier.com/S0306-4379(14)00180-X/sbref29
http://refhub.elsevier.com/S0306-4379(14)00180-X/sbref30
http://refhub.elsevier.com/S0306-4379(14)00180-X/sbref30
http://refhub.elsevier.com/S0306-4379(14)00180-X/sbref30
http://refhub.elsevier.com/S0306-4379(14)00180-X/sbref31
http://refhub.elsevier.com/S0306-4379(14)00180-X/sbref31
http://refhub.elsevier.com/S0306-4379(14)00180-X/sbref31
http://refhub.elsevier.com/S0306-4379(14)00180-X/sbref31
http://refhub.elsevier.com/S0306-4379(14)00180-X/sbref31
http://refhub.elsevier.com/S0306-4379(14)00180-X/sbref31
http://refhub.elsevier.com/S0306-4379(14)00180-X/sbref32
http://refhub.elsevier.com/S0306-4379(14)00180-X/sbref32
http://refhub.elsevier.com/S0306-4379(14)00180-X/sbref33
http://refhub.elsevier.com/S0306-4379(14)00180-X/sbref33
http://refhub.elsevier.com/S0306-4379(14)00180-X/sbref33
http://refhub.elsevier.com/S0306-4379(14)00180-X/sbref33
http://refhub.elsevier.com/S0306-4379(14)00180-X/sbref33
http://refhub.elsevier.com/S0306-4379(14)00180-X/sbref34
http://refhub.elsevier.com/S0306-4379(14)00180-X/sbref34
http://refhub.elsevier.com/S0306-4379(14)00180-X/sbref34
http://refhub.elsevier.com/S0306-4379(14)00180-X/sbref35
http://refhub.elsevier.com/S0306-4379(14)00180-X/sbref35

	Inverted index maintenance strategy for flashSSDs: Revitalization of in-place index update strategy
	Introduction
	Background
	FlashSSD architecture
	Advance of FTL technologies and write amplification
	Importance of exploiting internal parallelism of flashSSDs
	On-line maintenance strategies
	Merge-based maintenance
	In-place index update
	Hybrid


	Rediscovery of in-place index update strategy
	Multipath flash in-place strategy (MFIS)
	Data structure
	Index maintenance of MFIS
	Query processing of MFIS

	Experimental results
	Experimental setting
	Index maintenance performance
	Total indexing time
	Experiment for the threshold of the input buffer

	Query processing performance

	Related work
	Conclusion and discussion
	Acknowledgments
	References




