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Abstract. Exact match queries, wildcard match queries, and k-
mismatch queries are widely used in lots of molecular biology appli-
cations including the searching of ESTs (Expressed Sequence Tag) and
DNA transcription factors. In this paper, we suggest an efficient index-
ing and processing mechanism for such queries. Our indexing method
places a sliding window at every possible location of a DNA sequence
and extracts its signature by considering the occurrence frequency of each
nucleotide. It then stores a set of signatures using a multi-dimensional
index, such as the R*-tree. Also, by assigning a weight to each position of
a window, it prevents signatures from being concentrated around a few
spots in indexing space. Our query processing method converts a query
sequence into a multi-dimensional rectangle and searches the index for
the signatures overlapped with the rectangle.

Keywords: DNA database, indexing, exact match, wildcard match,
k-mismatch.

1 Introduction

DNA sequences hold the code that determines the characteristics of living or-
ganisms, and can be represented as a long list over the four-letter alphabet of
A, C, G, and T known as nucleotides. DNA sequence searching is an opera-
tion that finds, from a DNA database, DNA (sub-)sequences whose nucleotide
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arrangements are similar to a given query sequence. To cater for the evolution-
ary mutations and noises in DNA sequences, approximate match queries are
preferred to exact match queries for DNA sequence searching.

The most fundamental way for processing approximate match queries is to
use the Smith-Waterman alignment algorithm [12], a dynamic programming ap-
proach for finding an optimal local alignment between two sequences. This algo-
rithm, however, takes a long processing time of O(mn), where m and n are the
lengths of the two sequences to be aligned, respectively. A natural idea to re-
solve this kind of drawbacks is to employ the filtering and refinement approach.
BLAST [4, 5] is a typical example that follows this approach. Due to perfor-
mance reasons, it uses a heuristic algorithm based on a similarity model that is
slightly different from the one adopted in the Smith-Waterman alignment algo-
rithm. Recently, Kaheci et al. [10] proposed the MR-Index for efficient processing
of k-difference queries. A k-difference query is to find data subsequences that
can be matched to a given query sequence by performing at most k replacing,
inserting, and deleting operations.

In this paper, we proposes an approach for efficient processing of DNA se-
quence searching, especially exact match queries, wildcard match queries, and
k-mismatch queries. Exact match queries search a DNA database for the subse-
quences that are exactly matched to a query sequence. Wildcard match queries
contain wildcard characters marked as ‘∗’ in a query sequence, and find the sub-
sequences that are matched to a query sequence. Note that a wildcard matches
with any single nucleotide. K-mismatch queries retrieve the data subsequences
that have at most k nucleotides mismatched to those of a given query sequence.
These queries are widely used in various molecular biology applications such as
retrieval of expressed sequence tags and DNA transcription factors [8].

2 Definitions

The alphabet
∑

of nucleotides consists of 15 characters that can occur in DNA
sequences (See Table1). Four characters, A, C, G, and T, are used to express the
regions of a DNA sequence whose characteristics are discovered completely. We
call these four characters as principal nucleotides.

A DNA sequence T = 〈t1, t2, · · · , tn〉 is an ordered list of characters in the
alphabet

∑
. |T | denotes the length of T . We use T ′ to denote a contiguous

subsequence of T . A window is defined as a subsequence of a fixed length taken
from a DNA sequence. W and |W | denote a window and its length, respec-
tively. The window beginning at the ith position of a DNA sequence is denoted
as Wi.

Any two characters s and q are said to be matched if the intersection of the
set of characters represented by s and the set of characters represented by q is
not empty. Given a DNA data sequence T and a query sequence Q, the DNA
sequence searching problem is to find all subsequences T ′ of T that satisfy both
of the following conditions: (1) |Q| = |T ′|, and (2) for each i between 1 and |Q|,
the ith character of Q matches the ith character of T ′.
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Table 1. Characters included in the alphabet of nucleotides

Code Bases Code Bases Code Bases

A A Y C or T B C or G or T
C C S G or C D A or G or T
G G W A or T H A or C or T
T T K G or T V A or C or G
R A or G M A or C N any base

3 Related Work

The Boyer-Moore algorithm [7] and the Knuth-Morris-Pratt(KMP) algorithm
[11] have been devised for exact match queries. Their worst-case time complexity
proved to be linear to the length of data sequence. These algorithms, however,
should access the entire data sequences from disk because they are based on the
sequential scan.

The method combining the Aho-Corasick algorithm [3] and the scan vector
has been proposed for processing wildcard match queries [8]. By eliminating all
the wildcards from a query sequence, this method first obtains a set of subpat-
terns and their starting positions within a query sequence. Next, by using an
one-dimensional array called a scan vector, it finds the data subsequences, each
of which contains all those subpatterns in order. This method, however, has a
large storage overhead since it maintains the scan vector as large as the data
sequence. Also, it requires much processing time because it accesses the whole
data sequences from disk.

For processing k-mismatch queries, the suffix-tree-based method [13] con-
structs a suffix tree on data and query sequences. Next, it finds from the suffix
tree the lowest one among the common ancestor nodes of both sequences. It then
traverses down the subtree of that node until it encounters k mismatches. This
method can be applied to the processing of exact match and wildcard match
queries in a similar way. However, it suffers from a large storage overhead and
high cost for maintaining and traversing a huge suffix tree.

4 Basic Signature Index

This section proposes a new indexing method called BSI (Basic Signature In-
dex) and also suggests a query processing method based on the proposed index
structure.

To construct an index, we first locate a sliding window of size |W | on every
possible position of data sequence T . We then extract a basic signature from each
window, considering the minimum and maximum frequencies of each principal
nucleotide.
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Definition 1. Basic Signature: BS
Let BS(Wi) be a basic signature of window Wi. BS(Wi) is expressed as follows:

BS(Wi) = (([minA,maxA], [minC ,maxC ], [minG,maxG], [minT ,maxT ]), i)

Here, minA and maxA denote the minimum and maximum numbers of occur-
rences of character A, respectively, in Wi. The meanings of minC , maxC , minG,
maxG, minT , and maxT are analogous.

BS(Wi) is regarded as a 4-dimensional rectangle of ([minA,maxA], [minC ,
maxC ], [minG, maxG], [minT , maxT ]) along with the identifier i and thus can
be stored in a multi-dimensional index such as the R*-tree [9] and the X-tree [6].
The total number of windows taken from a data sequence T is |T | − |W | + 1.
Since |T | � |W | in most cases, the index for T could be much larger than T
itself.

To reduce this storage space, we only store the MBRs (Minimum Bounding
Rectangles) which cover the signatures for consecutive c data windows extracted
from a data sequence. Note that the signatures for consecutive two data win-
dows are not that different from each other and thus are located closely in the
4-dimensional indexing space. Therefore, we expect that the MBR covering con-
secutive c signatures will not be enlarged much. By using this approach, we are
able to reduce storage space for indexing to 1/c. We call c the index compression
coefficient.

The first step for query processing is to construct a query rectangle from a
query sequence Q. A query rectangle is formed in a different way according to
the types of a query submitted. Let us first suppose that |Q| = |W |.

o Exact match query: We construct a 4-dimensional query rectangle, ([minA,
maxA], [minC , maxC ], [minG, maxG], [minT , maxT ]), from the query se-
quence.

o Wildcard match query: We first construct a 4-dimensional query rectan-
gle by using the procedure for exact match queries. We then increase maxA,
maxC , maxG, and maxT by the number of occurrences of the wildcard on
the query sequence.

o K-mismatch query: We construct a 4-dimensional query rectangle by
using the procedure for wildcard match queries. We then increase maxA,
maxC , maxG, and maxT by the value of k, and also decrease minA, minC ,
minG, and minT by the value of k. This implies that each principal nu-
cleotide in a data window is allowed to occur k times more or less than
that in a query signature by k mismatches. If an adjusted minimum value
becomes less than 0, we set it to 0.

After constructing a query rectangle from a query sequence, we search the in-
dex for the data rectangles overlapping with the query rectangle. We call them
candidate rectangles. Then, we perform a post-processing step to discard false
alarms, those candidates that are not real answers. Using the identifier of each
candidate rectangle, this step reads its corresponding data window from the
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database, and then verifies whether the data window actually matches with the
query sequence. Only the candidate rectangles which pass this verification are
returned as final answers.

The identifier of each candidate rectangle is the beginning position of its
consecutive c data windows. Therefore, by using the identifier of each candidate
rectangle, we actually retrieve and verify the corresponding c data windows
together in the post-processing step.

Until now, we assumed |Q| = |W |. When |Q| < |W |, we generate a new
query sequence Q′ of length |W | by appending |W | − |Q| wildcard characters
‘∗’ to the end of Q and then apply the above query processing procedure to
Q′. When |Q| > |W |, we first partition a query sequence Q into p sub-query
sequences, Q1, Q2, · · · , and Qp, such that p = �|Q|/|W |� and |Qi| = |W | for
every i between 1 and p. Here, the last sub-query sequence Qp can be overlapped
with Qp−1 to make the constraint |Qi| = |W | satisfied. Next, we apply the above
query processing procedure to every sub-query sequence, and then obtain the
final answers by merging all the results.

5 Weighted Signature Index

Let us first mention a couple of drawbacks of BSI. First, in BSI, the signature
of a window is decided only by the number of occurrences of each principal
nucleotide. Therefore, there may be a great number of windows that are dif-
ferent from one another but are represented as the same signature. It causes
a large number of false alarms, resulting in high index-searching and post-
processing costs. Second, in most DNA sequences, the occurrence ratios of the
four principal nucleotides, A, C, G, and T , are roughly 30%, 20%, 20%, and
30%, respectively. The windows taken from such sequences also show simi-
lar occurrence ratios regardless of their beginning positions. Therefore, it is
likely that lots of windows are represented by the signatures close to the center
(0.3 × |W |, 0.2 × |W |, 0.2 × |W |, 0.3 × |W |).

To overcome the above limitations, we need to increase the number of distinct
signatures and spread them evenly on the indexing space.

5.1 Basic Strategy

The simplest way to overcome the limitations of BSI is to extract more features
from windows. However, this increases the dimensionality of the underlying in-
dex, and thus leads to the well-known dimension curse. To represent windows
more discriminatively without increasing the dimensionality, we propose a sim-
ple but effective method that assigns a weight to each position within a window.
This makes it possible to express both occurrence frequencies and occurrence
positions of nucleotides with a signature of the same dimensionality. To incor-
porate this method into our indexing approach, we first define a weight function
w(j) (1 ≤ j ≤ |W |) which assigns a weight to each position i within a window.
We then extract a weighted signature from each window.
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Definition 2. Weighted Signature: WS
Let WS(Wi) be a weighted signature of window Wi. WS(Wi) is expressed as
follows:

WS(Wi) = (([wminA, wmaxA], [wminC , wmaxC ], [wminG, wmaxG],
[wminT , wmaxT ]), i)

Here, wminA is the sum of the weights of the positions at which character
A must occur in window Wi, and wmaxA is the sum of the weights of the
positions at which character A may occur in Wi. The meanings of wminC ,
wmaxC , wminG, wmaxG, wminT , and wmaxT are analogous.

By taking the above weighting scheme, disparate windows that were repre-
sented by the same basic signature may now be expressed by different weighted
signatures. We incorporate this weighing scheme into the proposed index struc-
ture, thus producing a very effective index structure called WSI (Weighted Signa-
ture Index). WSI solves the problems of BSI by scattering the disparate windows,
which were represented by the same basic signature, over the indexing space.

The query processing algorithm for WSI is not that different from that for
BSI. However, when we construct a query rectangle for answering a k-mismatch
query, we need to consider the positions at which mismatches may occur. The
procedure to build a query rectangle for a k-mismatch query is skipped due to
space limitation.

5.2 Weight Function

Since the weight function determines the distribution of signatures in indexing
space, it has to be carefully designed. Consider a set of data windows which
have the same basic signature. Their weighted signatures get scattered over the
indexing space by the weight function. Let us consider an MBR that covers all
such weighted signatures. Larger MBR implies that the weighted signatures are
scattered over larger space. However, if the weighted signatures are scattered
too much, the corresponding MBR may overlap with its neighboring MBRs,
producing new false alarms. Therefore, we have to choose a weight function
which enlarges MBRs as much as possible without making them overlap with
their neighboring MBRs.

Let us give a formal discussion on this issue. For each principal character X,
let Rmin(X, s) denote the minimum of all wminX values obtained from a set of
all windows in which X occurs s times. That is, Rmin(X, s) =

∑s
j=1 sw(j) where

sw(j) denotes the jth smallest weight in a window. Similarly, let Rmax(X, s)
denote the maximum of all wmaxX values obtained from a set of all windows in
which X occurs s times. That is, Rmax(X, s) =

∑|W |
j=|W |−s+1 sw(j).

To prevent neighboring MBRs from being overlapped, Rmax(X, s) < Rmin

(X, s+1) should be satisfied for every s between 0 and |W |− 1. Supposing w(j)
= j + C, let us solve the inequality. Note that sw(j) is identical to w(j) in this
case.
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Rmax(X, s) < Rmin(X, s + 1)
⇔ ∑|W |

j=|W |−s+1 sw(j) − ∑s+1
j=1 sw(j) < 0

⇔ ∑|W |
j=|W |−s+1 w(j) − ∑s+1

j=1 w(j) < 0
⇔ −C − (s2 + (1 − |W |)s + 1) < 0

Since the above inequality should be satisfied for every s between 0 and
|W | − 1, we obtain C > (|W |−1)2

4 − 1. Among the values of C which satisfy
the inequality, we choose |W |2 for the sake of simplicity. That is, we use w(j) =
j + |W |2 for a weight function.

6 Performance Evaluation

In our experiments, as a data sequence T, we used six sets of DNA sequences
downloaded from NCBI [1]: human chromosome 3 (2.5Mbp), 17 (5Mbp), 1
(7.5Mbp), 2 (10Mbp), 10 (20Mbp), and 5 (40Mbp). As a query sequence, we
used 1,000 DNA sequences of length 256 to 2,048. A half of them were ran-
domly selected from T , and the other half were obtained from DNA sequences
[2] frequently used by biologists at laboratories.

We evaluated performances of four approaches: BSI, WSI, SeqScan, and Suf-
fix. SeqScan is the sequential scan based method, and Suffix is the method that
uses the suffix tree as an index structure.

6.1 Parameter Settings

It is desirable to set the window size slightly smaller than a typical size of a query
sequence. For determining a window size, we analyzed the lengths of 35,685 query
sequences downloaded from [2]. From the results, we observed that 62% of them
have the lengths of 256 to 2,048. Thus, we set the basic window size to 256 for
further experiments.

In order to find a good value for the index compression coefficient, while
changing the index compression coefficient, we evaluated the k-mismatch query
processing time of BSI and WSI using human chromosome 2 of 10Mbp as a data
sequence and 1% of the length of a query sequence as the value of k. As shown
in Fig. 1, as the compression coefficient increases up to 80, the query processing
time of both BSI and WSI decreases. From that point, however, their query
processing time increases as the compression coefficient gets larger. Therefore,
we set the base value for the compression coefficient to 80.

6.2 Results and Analyses

Experiment 1: Query Processing Time with Various Query Size
In this experiment, we compared query processing times of different approaches
while changing the length of query sequences. We used human chromosome 2 of
10Mbp as a data sequence. Also, we set both k for k-mismatch queries and the
number of wildcard characters for wildcard match queries to 10, which is 1% of
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Fig. 1. Query processing time with various

values for compression coefficient

Fig. 2. Processing time of k-mismatch

with various k values

the average length of query sequences. Fig. 3 depicts query processing times of
all the approaches for exact match, wildcard match, and k-mismatch queries.

In exact match queries, SeqScan and Suffix show nearly constant performance
regardless of the length of query sequences. In BSI and WSI, we observe that
the query processing time shrinks until the length of a query sequence reaches a
point (i.e., 512), and then grows gradually after that point.

In wildcard match queries, every approach spends more query processing time
compared with that of exact match queries. In BSI and WSI, wildcard characters
in a query enlarge the corresponding query rectangle and increase the number
of candidates, which leads to a large query processing time. As a query sequence
gets longer, however, the number of candidates decreases remarkably. Thus, the
performance improves significantly.

K-mismatch queries take a processing time much bigger than exact match
and wildcard match queries. In particular, Suffix shows performance worse than
even SeqScan since the part of the index to be traversed increases explosively. In
BSI and WSI, however, their performance is shown to be nearly constant, and
is not that affected by the changes of the length of query sequences.

In exact match queries, the results show that WSI outperforms SeqScan, Suf-
fix, and BSI 19 to 44 times, 2.9 to 6.1 times, and 2.2 to 2.7 times, respectively. In
wildcard match queries, WSI performs better than SeqScan, Suffix, and BSI 4 to
21 times, 1.4 to 4.5 times, and 1.5 to 1.8 times, respectively. Also, in k-mismatch
queries, BSI performs faster than SeqScan, Suffix, and BSI 7 to 28 times, several
thousand times, and 1.3 to 1.6 times, respectively.

Experiment 2: Processing Time of k-mismatch with Various k Value
In this experiment, we compared the processing times of k-mismatch queries of
different approaches with various k values. We used human chromosome 2 of
10Mbp as a data sequence. Fig. 2 shows an average query processing time of
each approach while setting k as 0%, 1%, 2%, and 3% of the length of a query
sequence. We observe that the query processing time of WSI, BSI, Suffix, and
SeqScan gets higher as k grows. In WSI and BSI, a higher k value makes the
part of an index to be traversed increased, and thus increases the query process-
ing time gradually. In Suffix, however, as k grows, the part of an index to be
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traversed becomes explosively larger, and thus, the query processing time grows
abruptly. The results reveal that WSI shows the best performance, and performs
better than SeqScan, Suffix, and BSI 3.6 to to 31 times, 3 to several thousand
times, and 1.1 to 2.3 times, respectively.

Experiment 3: Query Processing Time with Various Lengths of Data
Sequences
In this experiment, we measured the query processing times of different ap-
proaches with various data sizes. We excluded Suffix in this experiment since its
performance degradation in performing k-mismatch queries on a large database
is too serious to conduct experiments. Here, we set both k for k-mismatch queries

(a) Exact match queries (a) Exact match queries

(b) Wildcard match queries (b) Wildcard match queries

(c) K-mismatch queries (c) K-mismatch queries

Fig. 3. Query processing time with various

lengths of query sequences

Fig. 4. Query processing time with various

data sizes
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and the number of wildcard characters for wildcard match queries to 10, which is
1% of the average length of query sequences. Fig. 4 shows an average processing
time of each approach for exact match, wildcard match, and k-mismatch queries.

The processing time of BSI and WSI for three kinds of queries increases
almost linearly as the data size grows. WSI performs better than the other
approaches in processing all kinds of queries. In exact match queries, WSI runs
faster than SeqScan and BSI 25 to 33 times and 1.8 to 2.5 times, respectively. In
wildcard match queries, WSI outperforms SeqScan and BSI 15 to 19 times and
1.7 to 1.9 times, respectively. Also, in k-mismatch queries, WSI performs better
than SeqScan and BSI 13 to 20 times and 1.0 to 1.5 times, respectively.

7 Conclusion

Exact match queries, wildcard match queries, and k-mismatch queries are widely
used in lots of molecular biology applications including the searching of ESTs
(Expressed Sequence Tag) and DNA transcription factors.

In this paper, we proposed an efficient indexing and processing technique for
processing such queries on large DNA databases. The proposed indexing method
places a sliding window at every possible location of a data sequence, and extracts
its signature by considering the occurrence frequency of each nucleotide char-
acter. It then stores and manages a set of signatures using a multi-dimensional
index, such as R*-tree. Especially, by assigning a weight to each position of a
window, it scatters the signatures over the index space and thus reduces false
alarms. The experiments with real biological data sets revealed that the pro-
posed method is at least 2.9 times, 1.4 times, and several orders of magnitude
faster than the suffix-tree-based method in performing exact match, wildcard
match, and k-mismatch queries, respectively.
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