
A Novel Indexing Method for Efficient Sequence
Matching in Large DNA Database Environment

Jung-Im Won1, Jee-Hee Yoon2, Sanghyun Park1, and Sang-Wook Kim3

1 Department of Computer Science,
Yonsei University, Korea

{jiwon, sanghyun}@cs.yonsei.ac.kr
2 Division of Information Engineering and Telecommunications,

Hallym University, Korea
jhyoon@hallym.ac.kr

3 College of Information and Communications,
Hanyang University, Korea

wook@hanyang.ac.kr

Abstract. In molecular biology, DNA sequence matching is one of the
most crucial operations. Since DNA databases contain a huge volume
of sequences, fast indexes are essential for efficient processing of DNA
sequence matching. In this paper, we first point out the problems of
the suffix tree, an index structure widely-used for DNA sequence match-
ing, in the respects of the storage overhead, search performance, and
difficulty in seamless integration with DBMS. Then, we propose a new
index structure that resolves such problems. The proposed index struc-
ture consists of the two parts: the primary part realizes the trie as binary
bit-string representation without any pointers, and the secondary part
helps fast accesses of leaf nodes of the trie that need to be accessed for
post-processing. We also suggest efficient algorithms based on that index
for DNA sequence matching. To verify the superiority of the proposed ap-
proach, we conduct performance evaluation via a series of experiments.
The results reveal that the proposed approach, which requires smaller
storage space, can be a few orders of magnitude faster than the suffix
tree.

Keywords: DNA databases, DNA sequence matching, indexing.

1 Introduction

DNA sequences hold the code that determines life characteristics of every liv-
ing organism. A DNA sequence is represented as a string of a four-character
alphabet of A, C, G, and T known as the nucleotide bases. The DNA database
contains a huge volume of DNA sequences. Historically, the database has roughly
doubled in size every 14 months, and the increasing rate is growing gradually [3].
Since the size of DNA databases increases considerably as such, fast indexing is
crucial for an efficient information retrieval from those databases. DNA subse-
quence matching is an operation that is most frequently performed on a DNA

T.B. Ho, D. Cheung, and H. Liu (Eds.): PAKDD 2005, LNAI 3518, pp. 203–215, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

204 J.-I. Won et al.

database [7][20]. Given a database S, a query sequence Q, and a tolerance T, it
finds subsequences S’ of S whose dissimilarity with some subsequences Q’ of Q
is less than T.

BLAST [1] is a de-facto standard tool widely used by molecular biologists
to perform DNA subsequence matching. BLAST provides high performance by
using a heuristic algorithm, however, does not guarantee accuracy; i.e, it may
loose some true answers. The most popular algorithm that guarantees accuracy
is the Smith-Waterman algorithm [16]. The Smith-Waterman algorithm uses a
dynamic programming approach for finding an optimal local alignment between
S and Q of the two sequences. However, it suffers from a long processing time of
O(|Q| × |S|).

The suffix tree has been known to be a good index structure for efficient DNA
subsequence matching [5][11]. The suffix tree is a compressed digital trie whose
set of keywords comprises the suffixes of given sequences. The suffix tree shows
reasonable performance in finding all the matched subsequences. Moreover, it is
ready to be applied to applications that necessitate DNA subsequence matching
since approximate matching algorithms for it have already been proposed [18][8].
The elapsed time of subsequence matching by using such algorithms, however, in-
creases dramatically as the length of a query sequence and a tolerance increase.
To alleviate this problem, reference [13] proposed a hybrid indexing method
that divides a query sequence into multiple smaller pieces, performs their subse-
quence matchings with a smaller tolerance, and then integrates the results thus
obtained. Also, reference [12] suggested a method that applies the best-first(A*)
search method [9] in traversing a suffix tree. It shows the performance of subse-
quence matching comparable to that of BLAST in case of short query sequences.
Moreover, it guarantees accuracy as in the Smith-Waterman algorithm.

The suffix tree still has the following drawbacks due to its structural charac-
teristics: (1) Storage space: The suffix tree requires a large storage space; It is
often several ten times larger than a database [10][13][6]. Hunt et al. [8] reported
that a suffix tree required 19G bytes when they built it on DNA sequences of
286M bases. (2) Search performance: The large storage space required by
a suffix tree inversely affects the search performance. In addition, the poor lo-
cality of the suffix tree causes a significant loss of efficiency in respect of disk
accesses [6]. Thus, overall search performance deteriorates in DNA databases.
(3) Integration with DBMS: DBMS uses a page as a unit for storing all
kinds of data on disk. In contrast, the suffix tree has a difficulty in employing
a page as a storage unit due to its structural characteristics [17][19]. Thus, the
suffix tree has a problem in integrating itself with DBMS seamlessly.

In this paper, we propose a novel index structure that supports DNA subse-
quence matching efficiently as well as resolves the above drawbacks of the suffix
tree. The proposed index adopts a trie [17] as its conceptual structure and re-
alizes the trie by binary bit-string representation without pointers. In addition,
it employs a multi-dimensional index as a secondary structure for fast accesses
of the target leaf nodes when traversing the trie. With these characteristics, the
proposed index successfully solves all the problems in the respects of the storage

A Novel Indexing Method for Efficient Sequence Matching 205

space, search performance, and integration with DBMS. We also propose algo-
rithms that effectively process both exact and approximate DNA subsequence
matching by using the proposed index. Through extensive experiments, we quan-
titatively verify the effectiveness of our approach in comparison with the previous
ones. The results reveal that, compared with the previous ones, our approach
requires smaller storage space and achieves several times to several ten times
improvement in DNA subsequence matching performance.

2 Indexing Method

2.1 Binary Suffix Trie

A trie is defined as a |∑ |-ary tree in which each edge has a symbol from the
alphabet

∑
and symbols in each root-to-leaf path form a key. Here, |∑ | is the

alphabet size. A selection of subtries at level i is determined only by the ith

symbol of the search key, not the whole key. The most straightforward imple-
mentation of |∑ |-ary tries is to store |∑ | pointers in each node. This method
enables to select a child node in constant time. However, it is not space-efficient
because trie nodes may contain lots of NULL pointers when |∑ | is large. An
alternative is to use dynamic data structures such as linked lists. In the linked
list representation, each trie node stores two pointers, one to its leftmost right
sibling and one to its leftmost child. This implementation reduces a lot of NULL
pointers and therefore requires lesser storage space especially when |∑ | is large.
However, it cannot select a child node in constant time. In the worst case, all
the child nodes have to be examined.

Shang et al. [15] suggested pointerless binary tries which attained competitive
search speed with a minimal storage requirement. Pointerless binary tries require
the alphabet

∑
to have only two symbols, 0 and 1. Therefore, every node has

at most two outgoing edges. In the pointerless binary bit-string representation,
the symbols on the edges do not have to be stored explicitly by enforcing the
following rules: (1) the outgoing edge labeled with 0 connects to the left child
node, and (2) the outgoing edge labeled with 1 connects to the right child node.
More specifically, the trie node storing the two-bit data ‘10’ has only one child
which is on its left, and the node storing the two-bit data ‘01’ has only one child
which is on its right. Similarly, the trie node with ‘11’ has both left child and
right child, and the node with ‘00’ has no child.

In this paper, we propose an index structure for efficient DNA sequence
matching, exploiting the basic concepts of pointerless binary tries. Our aim is to
efficiently find the subsequences matched exactly or approximately to a query
sequence. Therefore, we extract all the suffixes from the DNA sequences and
insert each one of them into the trie. Since the suffixes are the inputs to the trie
construction algorithm, the resultant tree has the properties of suffix tries [17].
Suffix tries compress the input data set substantially when the input sequences
have lots of common prefixes. A DNA sequence can be considered as a string
from the alphabet

∑
= {A,C, G, T}. Since the alphabet size is small (which

206 J.-I. Won et al. 000001010011100101110111$ACGNTSY
Binary CodeSymbol

Fig. 1. Binary code of each symbol
in the alphabet

001010011101000010011101000011101000101000001010101000010101000101000S1: ACGTCGTGTTS2: ACTCTT$
Binary RepresentationSuffix

Fig. 2. Binary representations of the suf-
fixes from S1 = ‘ACGT’ and S2 = ‘ACT’

Fig. 3. Binary suffix trie constructed from
the suffixes of Figure 2

Fig. 4. Internal representations of the
binary suffix trie in Figure 3

is 4), it is highly possible that there exist a considerable number of common
prefixes in the suffixes of the input data set.

In this research, we use the minimum number of bits to represent each symbol
rather than using a character of 8 bits, to obtain higher compression ratio. Note
that DNA sequences may contain wild-card characters as well as the four typical
symbols of A, C, G, and T. For example, the wild-card N denotes one from A, C,
G, and T, and B denotes one from C, G, and T. Although wild-card characters
do not occur frequently, we need to uniquely encode each wild-card character
in addition to the typical four characters. For instance, when the number of
disparate symbols occurring in the DNA sequences to be indexed is at most
seven, we can use 3 bits to encode each symbol uniquely. If we construct the suffix
trie from DNA sequences encoded binary, we can expect a higher compression
ratio due to the increased number of common prefixes.

Let us examine the steps to build a binary suffix trie using an example.
Figure 1 shows a binary code of each symbol in our alphabet. Here, ‘$’ is a

A Novel Indexing Method for Efficient Sequence Matching 207

special character used as an end marker of every suffix. Given two sequences
S1 = ‘ACGT’ and S2 = ‘ACT’, we first convert all of their suffixes into the
corresponding binary bit-string representations as shown in Figure 2. We then
construct the trie through successive insertions of binary suffixes according to
their lexicographic order. Insertions based on the lexicographic order make the
trie grow only one direction and thus facilitate the disk-based trie construction.
Figure 3 shows the binary suffix trie constructed from the suffixes of Figure 2,
and Figure 4 shows its internal representation.

For the trie construction, we use a disk-based algorithm [4]. Therefore, when-
ever the main memory space of a predetermined size (i.e. page size) becomes oc-
cupied by a sub-trie, it is written onto a secondary storage (i.e. disk). To prevent
a sub-trie larger than a page from being written onto a disk page, we precalcuate
the maximum number of trie levels and the maximum number of trie nodes that
can be stored within a single page. In each page, the child nodes of each level are
either entirely on or entirely off that page. In other words, edges can only cross
the horizontal boundaries of pages, not the vertical boundaries. This restriction
is to reduce the number of disk pages to be read during query processing. Since
the trie is partitioned into a set of pages, it is necessary to maintain the page
table [15] to figure out the page connections. Each entry of the page table cor-
responds to a page and stores information related to that page, and each entry
is filled right after the corresponding page has been written on the disk.

2.2 Storing Leaf Nodes

Each suffix is identified by the pair of the sequence identifier and the starting
offset. When a suffix is inserted into the trie, its identifier is stored in the corre-
sponding leaf node. However, every trie node is represented by a two-bit number
in our indexing scheme. Therefore, suffix identifiers have to be kept separately
from the trie, using, i.e., a leaf node table.

When a query sequence is given, we traverse down the trie to find a node
beyond which more comparisons are meaningless. When the matching is success-
ful, a series of labels on the path between the root node and the node visited
last becomes the subsequence we are looking for in the database. To find the
locations at which the subsequences matched to a query sequence start, we need
to retrieve all the leaf nodes under the node visited last and get the suffix iden-
tifiers stored in these leaf nodes. When the index is large and the traversal ends
at a position not deep, a large portion of the trie has to be visited.

In this work, we propose to use a multi-dimensional index to speed up the
operation that retrieves all the leaf nodes under a given internal node. By re-
garding a binary bit-string representation of a suffix as a multi-dimensional key,
we build a multi-dimensional index from a set of suffixes. Notice that suffixes do
not have the same length. Therefore, we need the following scheme to convert a
suffix of variable length into a set of predetermined k integers: (1) When the
binary bit-string representation of a suffix is shorter than k-integer
length, we append multiple 0s to the end of a binary bit-string to make it be
of k-integer length. (2) When the binary bit-string representation of a

208 J.-I. Won et al.

suffix is longer than k-integer length, we cut out the rightmost bits so that
the resultant binary bit-string becomes of k-integer length.

3 Query Processing Method

3.1 Exact Subsequence Matching

Since each trie node is represented by a two-bit number in the proposed index,
the pointers from parents to children are not stored explicitly. The information
on the trie levels is not stored explicitly, either. Therefore, while traversing down
the index to find the subsequences matched to a query sequence, the algorithm
has to fetch the corresponding page and then extract those implicit information
using the data in the page.

Algorithm 1. Query processing algorithm Search-Trie

Input : binary suffix trie T , query sequence Q, page table P

Output: set of answers

1 initialize C0, N0,c, S0, and N0,f ;
2 for j := 0; j < p Height; j++ do
3 if j > 0 then
4 page change(P);
5 reset C0, N0,c, S0, and N0,f ;

6 for i := 0; i < n Height; i++ do
7 while isBefore(Ni,c) do
8 increase Ci;
9 update Si;

10 if !(match(node(Ni,c), Qi)) then
return {};

11 if isLast(Qi) then
return find answers();

12 get(Qi+1); increase Ci; update Si;
13 while isBefore(Ni,f) do

update Si;

14 if i < (n Height− 1) then
reset Ci+1, Ni+1,c, Si+1, and Ni+1,f ;

The algorithm Search-Trie which traverses the binary suffix trie T to retrieve
the subsequences matched to a query sequence is shown in Algorithm 1. We as-
sume that the query sequence Q has been already converted to its binary form.
Remember that the information related to the page partitioning is maintained
in the page table P . Let Li denote the ith trie level in the page that is being

A Novel Indexing Method for Efficient Sequence Matching 209

examined. The algorithm uses the following four variables to figure out the in-
ternal structure of the page. The variable Si stores the total number of nodes
located at Li. If a node at Li has the value ‘11’, it will increase Si+1 by one. On
the contrary, if a node at Li has the value ‘00’, it will decrease Si+1 by one. The
variable Ni,f denotes the position of the rightmost node at Li. Ni+1,f is simply
computed by summing Ni,f and Si+1. The variable Ni,c indicates the position
of the node at Li that should be compared with the ith query bit. The variable
Ci stores the total number of 1 bits counted from the leftmost node at Li to the
node positioned at Ni,c. Ni+1,c is obtained by summing Ni,f and Ci.

The algorithm Search-Trie operates as follows. We assume that the index
has p Height page levels and each page level has n Height node levels. First,
we initialize all the variables according to the fact that the first node of the
first page in the index is the root (line 1). The lines 3-5 in the external for
loop (lines 2-14) replace the current page level with the next page level. The
function page change(P) in line 4 computes the location of the next page using
the information in the page table P , and reads in the next page. Next, all the
variables are updated before entering into the stage of traversing the nodes in
the new page. The internal for loop (lines 6-14) is for handling a node level,
and it consists of the following four steps. Increasing Ci and updating Si, the
first step (lines 7-9) sequentially reads the nodes positioned before Ni,c. The
second step (lines 10-12) checks whether the node Ni,c matches the ith query
bit Qi or not. If not matched, the statement in line 10 is executed. If matched,
the algorithm checks if there are more query bits to be examined. If there is no
more query bit left, the function find answers() is called in line 11. The function
find answers() retrieves the suffix identifiers from the leaf nodes under Ni,c. If
there are more query bits to be examined, the statement in line 12 is executed
where the next query bit is read and the variables Si and Ci are updated and
increased respectively. While updating the variable Si, the third step in line 13
sequentially reads the nodes positioned before Ni,f . The final step in line 14
resets all the variables if there remain more node levels in the current page.

3.2 Direct Access of Leaf Nodes

The algorithm Search-Trie has the step to retrieve all the leaf nodes under the
node Ni,c at which the last query bit is matched successfully. This operation is
mainly performed in the function find answers(). The multi-dimensional index
introduced in Section 2.2 enables direct retrieval of the leaf nodes under Ni,c.
When the path p from the root to Ni,c matches the query sequence, we take one
of the following three options according to the length of p. (1) When p has
the length shorter than k-integers: Let p0 denote the binary bit-string of
k-integer length obtained by appending multiple 0s to the end of p. And let p1

denote the binary bit-string of k-integer length obtained by appending multiple
1s to the end of p. From the multi-dimensional index, we retrieve all the leaf
nodes having the values between p0 and p1. (2) When p has the length of
k-integers: From the multi-dimensional index, we retrieve all the leaf nodes
having the value p. (3) When p has the length longer than k-integers:

210 J.-I. Won et al.

Let pk be the prefix of p with k-integer length. From the multi-dimensional
index, we retrieve all the leaf nodes having the value pk. Then, we perform the
post-processing to detect and discard false matches.

3.3 Approximate Subsequence Matching

The basic method for approximate subsequence matching in DNA databases
is the dynamic programming (DP) technique. Given two sequences Q and S,
the DP technique finds their optimal distance by building a two-dimensional DP
table of |Q|+1 rows and |S|+1 columns. The recurrence relations corresponding
to the similarity measure of a target application are used to fill in each cell of
the DP table. The edit distance function [8][17] is a popular similarity measure
for approximate subsequence matching.

There have been several approaches [18][13][8] which employ the suffix tree
as an index to speed up approximate subsequence matching. They traverse the
suffix tree in the depth-first order and build-up the DP table between a query
sequence and a path from the root node of the suffix tree. The proposed binary
suffix trie also can be used as an index structure for approximate subsequence
matching. However, since every node is represented by a two-bit number in the
binary suffix trie, we need to access more than one node to append a new column
to the DP table.

Fig. 5. DP tables constructed from the binary suffix trie of Figure 3

Let us use an example to explain the proposed approximate subsequence
matching algorithm. Suppose that we want to find the subsequences whose edit
distances to the query sequence ‘AGG’ are not larger than 1. Figure 5 shows how
the DP tables are constructed during the traversal of the binary suffix trie shown
in Section 2. Since every symbol is encoded by three bits, the algorithm accesses

A Novel Indexing Method for Efficient Sequence Matching 211

three successive nodes to append a new column to the existing DP table. That
is, the columns for the symbols ‘A(001)’, ‘C(010)’, and ‘G(011)’ are appended
individually to the DP table when the algorithm reaches the nodes v, w, and x,
respectively. D1 in Figure 5 is the resultant DP table. Whenever a new column
is added to the DP table, we check whether or not the cell at the last row of
the newly added column has a value not larger than a distance threshold. If so,
all the leaf nodes under the node being visited satisfy the query. We use the
multi-dimensional index to directly retrieve such leaf nodes. In D1 of Figure 5,
the column for the symbol ‘G(011)’ is the newly added column. Since the value
of the cell at its last row is 1, all the leaf nodes under the node x satisfy the
query. The DP table D2 is obtained when the node y is visited. Since all the
cells in the last column have values larger than 1, the traversal stops at the node
y and comes back to its parent. Note that the first two columns of D1 and D2

tables are identical. These two columns are shared by the two tables to save
space and time.

4 Performance Evaluation

In our experiments, we have used DNA sequences of human chromosomes 18,
19 and 21 downloaded from GenBank [14]. From those data sequences, we have
randomly extracted some subsequences of arbitrary lengths as query sequences.
The DNA sequences used in our experiments consist of four frequent characters
A, C, G, and T, and also contain some infrequent wild-card characters such as
N, S, and Y. In addition, we have used a special character $ for representing
the end of a sequence. Thus, 8 different characters may appear within the DNA
sequences in our experiments. The hardware platform is the Pentium IV 2GHz
PC equipped with 1 Gbyte main-memory and 40 Gbyte hard disk. The software
platform is the Windows 2000 Server.

In experiment 1, we have compared three approaches Trie-Rtree, Trie-Naive,
and Suffix in the respect of the index size. Trie-Rtree represents our approach
that employs the trie using pointerless binary bit-string representation in con-
junction with a multi-dimensional index. As a multi-dimensional index, we have
used the R*-tree [2], a most-widely used in the literature. Trie-Naive also rep-
resents our approach that uses just the trie using pointerless binary bit-string
representation without employing a multi-dimensional index. Finally, Suffix is
the previous approach based on the suffix tree. We have applied an incremental
disk-based algorithm [4] for suffix tree construction, and also have allocated 32
byte memory chunk for each node in the suffix tree.

Figure 6 shows the change of the index sizes in the three approaches with
different data sizes. We have set the page size for each index to 4K bytes. The
suffix tree in Suffix consists of internal nodes and leaf nodes. The index in Trie-
Naive consists of a binary suffix trie, a page table, and a leaf node table. The index
in Trie-Rtree contains those used in Trie-Naive, and also maintains an additional
R*-tree for fast accesses of leaf nodes of the trie. In the figure, we observe that
the index size increases almost linearly in proportion to the data size in all the

212 J.-I. Won et al.

0500100015002000250030003500

1.07 2.16 4.22 43.3 72.3Data Size(Mbp)
Index Size(Mbyte
s)

Trie-Naïve Trie-Rtree Suffix
Fig. 6. Index sizes with different data
sizes

1101001000100001000001000000

6 8 10 15 30 60Query LengthQuery Processing
 Time(log scale,
 msec) SuffixSeqscanTrie-NavieTrie-Rtree

Fig. 7. Elapsed times of exact subsequence
matching with different query sequence
lengths

approaches. The results show that our Trie-Naive and Trie-Rtree achieve around
48% and 24% savings in storage space, respectively, in comparisons with Suffix.

In experiment 2, we have compared the three approaches along with Seqscan
in terms of the elapsed time for exact subsequence matching. Seqscan is the sim-
plest baseline method for DNA sequence matching, which is based on sequential
scan. For this experiment, we have used human chromosome 21 of 43.3 Mbp
as a data sequence. The total elapsed time is the time spent in finding the off-
sets in the DNA sequence from which subsequences exactly matched to a query
sequence start.

Figure 7 shows the result. Seqscan performs poorly regardless of query se-
quence lengths. Trie-Navie performs well with long query sequences, but performs
poorly with short query sequences due to its high overhead for post-processing.
On the other hand, Trie-Rtree shows good performance regardless of query se-
quence lengths, and achieves 13 to 29 times speedup compared with Suffix, 54
to 145 times speedup compared with Seqscan.

In experiment 3, we have compared two approaches Trie-Rtree and Suffix in
terms of the elapsed time for approximate subsequence matching. We have em-
ployed two different approaches: one is to find all the subsequences whose edit
distances to a query sequence are not larger than k, which has been commonly
used in many DNA subsequence matching, and the other is to find the similar
subsequences using the best-first(A*) search algorithm. The data sequence used
in the experiment is human chromosome 21 of 43.3Mbp.

Figure 8 shows the elapsed times of approximate subsequence matching by
Suffix and Trie-Rtree for finding all the subsequences whose edit distances to
a query sequence are not larger than 1. In the current experiment, we follow
the behavior of reference [13], considering only short query sequences with a
small tolerance. The elapsed time here is the total time required for obtaining
pairs <sequence number, offset> of all the similar subsequences. The values
within parentheses represent the post-processing time spent in finding leaf nodes.
The result shows that Suffix has a large elapsed time for short query sequences
due to a big post-processing time. On the other hand, Trie-Rtree shows better

A Novel Indexing Method for Efficient Sequence Matching 213Query Processing Time(msec)
151086Query Length

223,85733,422388,321Total hits
1,216.9(3.1)1,157.5(365)854(412.7)817.4(623)Trie-Rtree 3,456.8(0.4)3,055.6(109)3,120.2(674.9)14,248.5(7446)Suffix

Fig. 8. Elapsed times spent in finding all
the subsequences whose edit distances to a
query sequence are not larger than 1

110
1001000100001000001000000

6 8 10 15 30 60Query LengthQuery Proces
sing Time(log
 scale, msec)

Suffix*Trie-Rtree*SW
Fig. 9. Elapsed times spent in finding
the subsequence most similar to a query
sequence

performance due to direct accesses of leaf nodes by using the R*-tree. For long
query sequences, however, a large number of bit operations increase the time for
traversing the suffix trie, and subsequently enlarge the entire elapsed time.

Figure 9 depicts the result of comparing the elapsed times of Suffix*, Trie-
Rtree* and SW. Here, the elapsed time is the total time required to find a set
of subsequences, each of which is most similar to a query sequence in each data
sequence, from a DNA database. Trie-Rtree* and Suffix* represent the elapsed
time of approximate subsequence matching by Trie-Rtree and Suffix, respectively,
that employ the best-first(A*) search algorithm [12]. Also, SW represents elapsed
time of approximate subsequence matching by the Smith-Waterman algorithm.
The result shows that Trie-Rtree* performs better than Suffix*. This is because
the way for storing nodes in the suffix trie harmonizes with the level-first traversal
fashion of the best-first(A*) search algorithm. That is, as mentioned in Section
2.1, all the child nodes of each level of a page are either entirely on or entirely
off that page. This is quite effective in such environment where all the sibling
nodes are accessed together as in the best-first(A*) search. The result shows
that, compared with Suffix* and SW, Trie-Rtree* performs about 4 to 9 times
and about 592 to 2,505 times better, respectively.

5 Conclusions

In this paper, we first have pointed out the problems occurring in the suffix tree
for DNA sequence matching: (1) high storage overhead, (2) low search perfor-
mance, (3) difficulty in seamless integration with DBMS. Then, we have pro-
posed a novel index structure that resolves them. Our index employs a trie as its
primary structure and implements it by using binary bit-string representation
without pointers. Major advantages of this implementation are to reduce the
storage overhead considerably and to build its structure easily in page units.
Also, our index employs a multi-dimensional index as a secondary structure for

214 J.-I. Won et al.

fast accesses of the target leaf nodes after traversing the trie. With the proposed
index, we can successfully alleviate the three problems of the suffix tree. We also
have proposed the algorithms that process DNA sequence matching effectively
based on the proposed index. To verify the effectiveness of our approach, we
have performed a series of experiments. The results reveal that the proposed ap-
proach, which requires smaller storage space, can be a few orders of magnitude
faster than the suffix tree. In case of exact matching, Trie-Rtree, our enhanced
approach, runs 13 to 29 times faster than the Suffix. In case of approximate
matching, it achieves 4 to 9 times speedup over Suffix.

Acknowledgments. This work was supported by the Basic Research Pro-
gram(Grant R04-2003-000-10048-0) of KOSEF, the ITRC support program
(MSRC) of IITA, the Hanyang University(HY-2003-T), and the Korea Research
Foundation Grant (KRF-2004-003-D00302).

References

1. S. Altschul, W. Gish, W. Miller, E. Myers, and D. Lipman, “Basic local alignment
search tool”, Journal of Molecular Biology , 215, pp. 403-410, 1990.

2. N. Beckmann, H. Kriegel, R. Schneider, and B. Seeger, “The R*-tree: An effi-
cient and robust access method for points and rectangles”, Proc. ACM SIGMOD
International Conference on Management of Data , pp. 322-331, 1990.

3. D. A. Benson, M. S. Boguski, D. J. Lipman, J. Ostell, and B. F. Quellette, “Gen-
bank”, Nucleic Acids Research, Vol. 26, No. 1, pp. 1-7, 1998.

4. P. Bieganski, J. Riedl, and J. V. Carlis, “Generalized suffix trees for biological se-
quence data: applications and implementation”, Proc. Hawaii International Con-
ference on System Sciences, 1994.

5. A. L. Delcher, S. Kasif, R. D. Fleischmann, J. Peterson, O. White, and S. L.
Salzberg, “Alignment of whole genomes”, Nucleic Acids Research, 27, pp. 2369-
2376, 1999.

6. R. Giegerich, S. Kurtz, and J. Stoye, “Efficient Implementation of Lazy Suffix
Trees”, Softw. Pract. Exp., Vol 33, pp. 1035-1049, 2003.

7. R. S. C. Goble, P. Baker, and Brass, “A Classification of tasks in bioinformatics”,
Bioinformatics, Vol. 17, No. 2, pp. 180-188, 2001.

8. E. Hunt, M. P. Atkinson and R. W. Irving, “Database indexing for large DNA and
protein sequence collections”, VLDB Journal , Vol. 11, No. 3, pp. 256-271, 2002.

9. K. Kelly and P. Labute, “The A* Search and Applications to Sequence Alignment”,
http://www.chemcomp.com/article/astar.htm, 1996.

10. S. Kurtz and C. Schleiermacher, “REPuter: fast computation of maximal repeats
in complete genomes”, Bioinformatics, Vol. 15, No. 5, pp.426-427, 1999.

11. S. Kurtz, J. Choudhuri, E. Ohlebusch, C. Schleiermacher, J. Stoye, and R.
Giegerich, “REPuter: the manifold applications of repeat analysis on a genome
scale”, Nucleic Acids Research, Vol. 29, No. 22, pp. 4633-4642, 2001.

12. C. Meek, J. M. Patel, and S. Kasetty, “OASIS: An Online and Accurate Technique
for Local-Alignment Searches on Biological sequences”, Proc. VLDB Conference,
pp. 920-921, 2003.

13. G. Navarro and R. Baeza-Yates, “A Hybrid Indexing Method for Approximate
String Matching”, Journal of Discrete ALgorithms , Vol. 1, No. 1, pp.205-239, 2000.

A Novel Indexing Method for Efficient Sequence Matching 215

14. http://www.ncbi.nlm.nih.gov
15. H. Shang and T. H. Merrett, “Tries for approximate string matching”, IEEE Trans.

on Knowledge and Data Engineering , Vol. 8, No. 4, pp. 540-547, 1996.
16. T. Smith and M. Waterman, “Identification of Common Molecular Subsequences”,

Journal of Molecular Biology 147, pp. 195-197, 1981.
17. G. A. Stephen, String Searching Algorithms , World Scientific Publishing, 1994.
18. E. Ukkonen, “Approximate string matching over suffix trees”, Proc. Combinatorial

Pattern Matching , pp. 228-242, 1993.
19. H. Wang et al., “BLAST++: A Tool for BLASTing Queries in Batches”, Proc.

Asia-Pacific Bioinformatics Conference, pp. 71-79, 2003.
20. H. E. Williams and J. Zobel, “Indexing and Retrieval for Genomic Databases”,

IEEE TKDE , Vol. 14, No. 1. pp. 63-78, 2002.

