
Information Systems 28 (2003) 867–883

Similarity search of time-warped subsequences
via a suffix tree$

Sanghyun Parka,*, Wesley W. Chub, Jeehee Yoonc, Jungim Wonc

aDepartment of Computer Science and Engineering, Pohang University of Science and Technology (POSTECH), Pohang, South Korea
bDepartment of Computer Science, University of California at Los Angeles (UCLA), USA
cDivision of Information and Communication Engineering, Hallym University, South Korea

Received 21 November 2001; received in revised form 15 October 2002; accepted 15 November 2002

Abstract

This paper proposes an indexing technique for fast retrieval of similar subsequences using the time-warping distance.

The time-warping distance is a more suitable similarity measure than the Euclidean distance in many applications where

sequences may be of different lengths and/or different sampling rates. The proposed indexing technique employs a disk-

based suffix tree as an index structure and uses lower-bound distance functions to filter out dissimilar subsequences

without false dismissals. To make the index structure compact and hence accelerate the query processing, it converts

sequences in the continuous domain into sequences in the discrete domain and stores only a subset of the suffixes whose

first values are different from those of the immediately preceding suffixes. Extensive experiments with real and synthetic

data sequences revealed that the proposed approach significantly outperforms the sequential scan and LB scan

approaches and scales well in a large volume of sequence databases.

r 2002 Elsevier Science Ltd. All rights reserved.

Keywords: Similarity search; Sequence database; Categorization; Indexing; Suffix tree; Time-warping distance

1. Introduction

A similarity search in sequence databases is an
operation that finds sequences or subsequences
whose changing patterns are similar to that of a
given query sequence [1–3]. Similarity search is of
growing importance in many new application
domains such as information retrieval, data
mining and clustering. Especially in the medical
domain, a search for patients with similar disease

evolution patterns can augment the process of
patient care by providing physicians with insight
into the treatment of previous patients with similar
medical conditions.
The sequential scan method for similarity search

reads each sequence or subsequence sequentially
from the database and computes its distance to a
query sequence. This method is simple but suffers
from severe performance degradation when the
database is large. Therefore, an effective indexing
scheme is essential as a scalable solution for
similarity search.
Most of the previous indexing techniques [1,3,4]

for similarity search use the Euclidean distance

$Recommended by Dr. Nick Koudas.

*Corresponding author.

E-mail address: sanghyun@postech.ac.kr (S. Park).

0306-4379/03/$ - see front matter r 2002 Elsevier Science Ltd. All rights reserved.

doi:10.1016/S0306-4379(02)00102-3

metric. However, in many applications, the sam-
pling rates and/or the lengths of sequences may be
different, making it difficult or impossible to use
the Euclidean distance as a similarity measure. In
the area of speech recognition [5], this problem
has been approached using a similarity measure,
called the time-warping distance [5,6], which
allows sequences to be stretched or compressed
along the time axis. Under time-warping, any ele-
ment of a sequence can be matched to one or
more neighboring elements of another se-
quence. As an example [7], let us consider two
sequences, X ¼ /20; 20; 21; 21; 20; 20; 23; 23S and
Y =/20; 21; 20; 23S where the sequence X is the
closing price of a stock taken every day and Y is
the closing price of another stock taken every
other day. X and Y cannot be compared directly
because the sequence X is longer than Y : The
Euclidean distance between Y and any subse-
quence of length four of X is greater than 1.41.
However, if we replicate every element of Y using
time warping, we find that the two sequences are
identical.
It is important to prevent the occurrence of false

dismissals [1] in similarity search. A false dismissal
is defined as missing a part of the final query result.
Indexing techniques that assume the triangular

inequality directly or indirectly may produce false
dismissals when the distance function not satisfy-
ing the triangular inequality is used as a similarity
measure [4]. Unfortunately the time-warping dis-
tance does not satisfy the triangular inequality,
which can be simply proved by a counter example
[4]. This property makes spatial access methods
based on the triangular inequality unsuitable for
similarity search with the time-warping distance.
In the area of string matching, a suffix tree [8]

has been extensively used as an index structure to
find the substrings that are exactly matched to a
given query string. A suffix tree may be a good
candidate for an index structure with the time-
warping distance because it does not assume any
geometry or any underlying distance functions.
However, the following problems have to be
addressed so that a suffix tree can be used in
similarity search: (1) A suffix tree is designed for
exact matching of substrings. Its search algorithm
needs to be extended for similarity-based matching

of subsequences. (2) A suffix tree is usually built
from sequences in the discrete domain; however,
sequences we consider in this paper are from the
continuous domain. A systematic method to
convert continuous values into discrete values is
required.
This paper proposes a new indexing technique

for the fast retrieval of similar subsequences of
different lengths and/or different sampling rates.
The proposed technique employs the time-warping
distance as a similarity metric and a disk-based
suffix tree as an index structure. To reduce the
index size, it converts sequences of continuous
values into sequences of discrete values and stores
only a subset of suffixes whose first values are
different from those of the immediately preceding
suffixes. When a query sequence Q is submitted, a
suffix tree is traversed from the root and the time-
warping distances between Q and the subse-
quences contained in a suffix tree are computed.
Because the subsequences contained in a suffix tree
are of discrete values, their exact distances to Q

cannot be obtained. Therefore, the proposed
approach employs lower-bound distance functions
to estimate the exact distance without false
dismissals.
This paper is organized as follows. Section 2

provides a brief overview of the related work on
sequence matching problems and Section 3 gives
the definition and property of the time-warping
distance. Section 4 introduces the index construc-
tion and query processing algorithms for a disk-
based suffix tree. The ideas of a categorization and
a sparse suffix tree are applied to the similarity
search algorithms in Sections 5 and 6, respectively.
And, Section 7 compares the proposed algorithm
with the sequential scan and LB scan algorithms.

2. Related work

There has been much research on similarity
search in sequence databases. Agrawal et al. [1]
proposed the F-Index, a similarity searching
technique for whole sequence matching. Sequences
are converted into the frequency domain by the
Discrete Fourier Transform (DFT) and are subse-
quently mapped into multi-dimensional points

S. Park et al. / Information Systems 28 (2003) 867–883868

that are managed by an Rn-tree [9]; this technique
was extended to locate similar subsequences [3].
Since both approaches use the Euclidean distance,
sequences of different sampling rates cannot be
matched.
Several sequence matching techniques that allow

transformations or noises were proposed. Goldin
et al. [10] grouped sequences into equivalent
classes using the normal form. Although the
normal form is invariant to shape-based transfor-
mations such as scaling and shifting, it does not
handle the compressions or the stretches of
element values along the time axis. Rafiei et al.
[7] proposed a class of sequence transformations
that can be used in a query language to express
similarity with an R-tree [11] index. The proposed
transformations handle moving average and glo-
bal time scaling, but not time-warping. Agrawal
et al. [2] proposed a new model of similarity that
captures the intuitive notion that two sequences
should be considered similar if they have enough
non-overlapping time ordered pairs of similar
subsequences.
More recent approaches permit the matching of

sequences of different lengths. Bozcaya et al. [12]
presented a modified version of an edit distance,
judging that two sequences are similar if a
majority of their elements match. Yi et al. [4]
supported the time-warping distance using a
two-step filtering process: a FastMap [13] index
filter followed by a lower-bound distance filter.
The underlying index structures of both ap-
proaches [12,4] are based on the triangular
inequality. The approach suggested by Keogh
et al. [14,15] read a data sequence sequentially
from the database, converted it into an ordered list
of piece-wise linear segments using the best fitting
line, and applied the modified time-warping
distance measure. Park et al. [16] proposed a
segment-based subsequence searching scheme for
the database of long sequences. This scheme
changed the similarity measure from the time-
warping distance to the piece-wise time-warping
distance and limited the number of data subse-
quences to be compared with a query sequence.
Although the above approaches [14–16] based on
piece-wise linear segments significantly reduce
the search time, they may miss the similar

subsequences starting or ending at the middle of
segments.
Several shape-based similarity matching

schemes were proposed. Agrawal et al. [17]
demonstrated a shape definition language (SDL)
and provided an index structure for speed up the
execution of SDL queries. Shatkay et al. [18]
introduced the notion of generalized approximate
queries that specify the general shapes of data
histories. Whereas both approaches may handle
the variations of element values on the time axis,
they are not suitable for applications that care
about specific element values.
There are also a few approaches for the

matching of biological sequences. Bieganski et al.
[19] proposed to use a disk-based suffix tree for
solving the sequence alignment problem, and
Wang et al. [20] addressed the problem of
discovering patterns in protein databases with a
string edit distance. Whereas we focus on the
sequences of continuous numeric values, both
approaches center on the sequences of discrete
symbols. Furthermore, the approach ofWang et al.
[20] uses a memory resident suffix tree, making it
infeasible for a large sequence database.

3. Time-warping distance

Finding a similarity measure for sequences is
not easy because sequences that are qualitatively
the same may be different quantitatively. First, the
sequences may be of different lengths, making it
difficult or impossible to embed the sequences in a
metric space and use the Euclidean distance to
determine similarity. Second, the sampling rates of
sequences may be different: one sequence may be
sampled every minute while another sequence is
sampled every other minute. Such differences in
rates make similarity measures such as cross-
correlation unusable.
This paper uses a time-warping similarity

measure [5,6] that allows sequences to be stretched
or compressed along the time axis. Time warping
is a generalization of classical algorithms for
comparing discrete sequences to sequences of
continuous values. Time warping is extensively
used in matching of voice, audio and medical

S. Park et al. / Information Systems 28 (2003) 867–883 869

signals (electrocardiograms). To find the minimum
difference between two sequences, time warping
maps each element of a sequence to one or more
neighboring elements of another sequence.
Let us introduce a few notations before

presenting a formal definition of the time-
warping distance. We use the notation X ¼
/X ½1�;y;X ½n�S for a sequence with n elements.
X ½i� denotes the ith element of X and jX j denotes
the number of elements in X : X ½i : j� is a
subsequence of X containing elements in positions
i through j: X ½i : �� is a subsequence of X starting
at the ith element position and ending at the last
element position. That is, X ½i : �� ¼ X ½i : jX j�:
X ½i : �� also represents the suffix of X starting at
the ith position. Let us now give the formal
definition of the time-warping distance.

Definition 1. Given any two non-null sequences X

and Y ; the time-warping distance DtwðX ;Y Þ is
defined as follows:

DtwðX ;Y Þ

¼
ffi
DbaseðX ½1�;Y ½1�ÞpþMinStutterDistðX ;Y Þpp

p
;

DbaseðX ½1�;Y ½1�Þ ¼ jX ½1� � Y ½1�j;

MinStutterDistðX ;Y Þ

¼ min

DtwðX ;Y ½2 : ��Þ;

DtwðX ½2 : ��;Y Þ;

DtwðX ½2 : ��;Y ½2 : ��Þ:

8><
>:

Definition 1 generalizes the original time-warping
distance [4–6] to handle various values of p: It is
called the L1-based time-warping distance when
p ¼ 1; the L2-based time-warping distance when
p ¼ 2; and the LN-based time-warping distance
when p ¼ N: Berndt et al. [6] and Yi et al. [4]
focused on the L1-based time-warping distance,
and Park et al. [21] mainly handled the LN-based
time-warping distance. However, this paper con-
siders all possible values of p:

DtwðX ;Y Þ can be efficiently calculated using a
dynamic programming technique [6] based on the
recurrence relation. The dynamic programming
algorithm [6] fills in table T ; which contains
cumulative distances, as the computation pro-
ceeds. The final cumulative distance, T ½jY j�½jX j�; is

the minimum distance between X and Y ; and the
matching of elements can be traced backward in
the table by choosing the previous cells with the
lowest cumulative distance. This distance compu-
tation has the complexity OðjX jjY jÞ: Fig. 1 shows
the cumulative distance table for computing the
L1-based time-warping distance between the two
sequences X ¼ /3; 4; 3S and Y ¼ /4; 5; 6; 7; 6; 6S:
Here DtwðX ;Y Þ ¼ 12 because T ½jY j�½jX j� ¼
T ½6�½3� ¼ 12:
The distance between X and any prefix of Y can

be computed simply by reading the rightmost
column of each row of the cumulative distance
table. More specifically, the distance between X

and Y ½1 : j� ðj ¼ 1; 2;y; jY jÞ is stored in the
rightmost column of the jth row. In the above
example, DtwðX ;Y ½1 : 4�Þ is 8, as seen in the
rightmost column of the row 4. Thus the
determination as to whether the time-warping
distance of two sequences is greater than a distance
threshold e does not require us to build the entire
cumulative distance table, as proven by the
following theorem.

Theorem 1. If all the columns of the top row of the

cumulative distance table have values greater than a

distance tolerance e; adding more rows on this table

does not yield a new value less than or equal to e:

row 6

row 5

row 4

row 3

row 2

row 1

Y
X 3 4 3

4

5

6

7

6

6

1

3

6

10

13

16

1 2

2 3

4 5

7 8

9 10

11 12

col 1 col 2 col 3

Fig. 1. Cumulative distance table for computing the L1-

based time-warping distance between X ¼ /3; 4; 3S and

Y ¼ /4; 5; 6; 7; 6; 6S: DtwðX ;Y Þ ¼ 12 because T ½jY j�½jX j� ¼
T ½6�½3� ¼ 12:

S. Park et al. / Information Systems 28 (2003) 867–883870

Proof. The proof is given in [22]. &

Let us consider Fig. 1 again. If e is 3, after
inspecting row 3, we can determine that the
distance between X and Y is greater than e
because all the columns of row 3 have values
greater than 3. Therefore, we do not have to fill the
remaining three rows. In the remaining sections,
we use Theorem 1 to reduce the search space of an
index structure.

4. Similarity search using a suffix tree

This section proposes to use a suffix tree as an
index structure for similarity search with the time-
warping distance. Before describing the methods
for constructing and traversing a suffix tree, we
present the definition and internal structure of a
suffix tree.
A trie is a data structure used for indexing a set

of keywords. A suffix trie [8] is a trie whose set of
keywords comprises the suffixes of sequences.
Nodes with a single outgoing edge can be
collapsed, yielding the structure known as a suffix

tree [8]. A suffix tree is generalized [19,20] to allow
multiple sequences to be stored in the same tree.
Each suffix of a sequence is represented by a leaf
node. More specifically, X ½i : �� is expressed by a
leaf node labeled with ðIDðX Þ; iÞ; where IDðX Þ
is the identifier of X and i is the offset from
which the suffix starts. We use the notation
labelðN1;N2Þ for the concatenated labels on the
path from a node N1 to another node N2: Fig. 2
shows the suffix tree constructed from the
two sequences X = /4; 5; 6; 7; 6; 6S and Y ¼
/4; 6; 7; 8S: The six suffixes ð/4; 5; 6; 7; 6; 6S;
/5; 6; 7; 6; 6S; /6; 7; 6; 6S; /7; 6; 6S; /6; 6S;
/6SÞ from X and the four suffixes ð/4; 6; 7; 8S;
/6; 7; 8S; /7; 8S; /8SÞ from Y are extracted and
then inserted into the suffix tree. $ denotes an end
marker of a suffix.

4.1. Index construction

A suffix tree for multiple sequences can be
constructed by adding a special sequence separator
symbol to the alphabet. The sequences to be
included in the tree are concatenated, separated
from each other by this separator symbol. Then

4

5
6

7
6

6
$

6
7
8
$

5
6

7
6

6
$

6

$ 6
$

7

6
6
$

8
$

7 8
$

6
6
$

8
$

(X,1) (Y,1) (X,2) (X,6) (X,5)

(X,3) (Y,2)

(X,4) (Y,3)

(Y,4)

Fig. 2. The suffix tree constructed from X ¼ /4; 5; 6; 7; 6; 6S and Y ¼ /4; 6; 7; 8S: The six suffixes ð/4; 5; 6; 7; 6; 6S; /5; 6; 7; 6; 6S;
/6; 7; 6; 6S; /7; 6; 6S; /6; 6S; /6SÞ from X and the four suffixes ð/4; 6; 7; 8S; /6; 7; 8S; /7; 8S; /8SÞ from Y are extracted and then

inserted into the suffix tree. $ denotes an end marker of a suffix.

S. Park et al. / Information Systems 28 (2003) 867–883 871

the ordinary suffix tree construction algorithm is
applied to the concatenated sequence. A suffix tree
being created by this process has to reside in main
memory during construction. Therefore, this
approach is not feasible in a large sequence set.
To remedy this problem, we use an incremental

disk-based suffix tree construction method pro-
posed in [19]. Two suffix trees, representing two
disjoint sets of sequences, are merged to produce a
single suffix tree by performing the pre-order
traversal on both trees and combining the paths
corresponding to common subsequences. A suffix
tree for a large set of sequences can be constructed
by performing a series of binary merges.
Two suffix trees, one for X and another for Y ;

are merged with the time complexity OðjX j þ jY jÞ:
Therefore, the construction of a suffix tree from m

data sequences, whose average length is %L; requires
the complexity Oðm %LÞ: The total number of nodes
in a suffix tree is constrained due to two factors:
(1) there are Oðm %LÞ leaf nodes and (2) the degree
of any internal nodes is at least 2. As a result, the
maximum number of nodes and overall space
requirement of a suffix tree are linear to m %L [8].

4.2. Search algorithm: SimSearch-ST

A suffix tree is a useful index structure for exact
matching of subsequences. To find the subse-
quences exactly matched to a query sequence Q;
the suffix tree is traversed from the root and the
traversal is terminated when the end of Q is
reached or a node is reached beyond which further
traversal is not possible. This traversal algorithm is
performed in OðjQjÞ: Although this algorithm is
simple and fast, it cannot be directly applied to the
similarity search problem.

Problem Definition. Given a set of data se-

quences of arbitrary lengths, a query sequence

Q; and a distance tolerance e; find those

subsequences whose time-warping distances to

Q are less than or equal to e:

Additional types of queries include the nearest
neighbor queries (e.g., ‘‘find the five subsequences
most similar to a given query sequence’’) and the
‘‘all pairs’’ queries (e.g., ‘‘report all pairs of

subsequences that are within distance e from each
other’’). Both types of queries can be handled by
our approach using a branch-and-bound algo-
rithm [23] together with a spatial join algorithm
[24].
The proposed similarity search algorithm Sim-

Search-ST is given in Algorithm 1. The search
starts from the root and continues the depth-first
traversal until all the subsequences whose time-
warping distances to Q are within e are found.

Algorithm 1: Similarity search algorithm Sim-

Search-ST

Input: root node R; query sequence Q; distance
tolerance e

Output: answerSet
cumDistTable ’ NULL;
answerSet ’ Filter-STðR;Q; e; cumDistTable);
return answerSet;

The actual filtering process is executed in Filter-
ST shown in Algorithm 2. When Filter-ST visits a
node N; it inspects each child node CNi to find a
new answer and to determine whether further
depth traversal is needed or not. Simply we assume
that every edge connecting a node N and its child
node CNi is labeled with a single symbol.
To find a new answer, Filter-ST builds

a cumulative distance table for Q and
labelðN;CNiÞ: If N is the root (i.e., CNi is the
direct child of the root), then the distance table is
built from the bottom. Otherwise, the distance
table is constructed by appending a new row on
the existing table T which has been accumulated
from the root to N: The algorithm calls the
function AddRowðT ;Q; labelðN;CNiÞ; Dtw) to
build a new cumulative distance table, using the
distance function Dtw; by appending a new row for
labelðN;CNiÞ on T : If the rightmost column of a
newly added row has a value less than or equal to a
distance tolerance e; then labelðroot;CNiÞ is added
into the answer set.
To determine if visiting the subtree of CNi is

needed, the algorithm reads each column of a
newly added row. If at least one column has a
value less than or equal to e; then the algorithm
continues down the tree to find more answers.
Otherwise, the algorithm moves to the next child

S. Park et al. / Information Systems 28 (2003) 867–883872

of N: This branch-pruning method is based on the
Theorem 1 shown in Section 3.

4.3. Algorithm complexity

Before analyzing the complexity of SimSearch-
ST, let us examine the complexity of the sequential
scan method. The sequential scan method reads
each sequence and builds as many cumulative
distance tables as the number of suffixes contained
in the sequence. The complexity of building a
cumulative distance table for the query sequence Q

and the suffix of length L is OðLjQjÞ: For m data
sequences whose average length is %L; there are m %L

suffixes and their average length is ð %L þ 1Þ=2:
Therefore, the complexity of the sequential scan is
expressed as Oðm %L2jQjÞ:
SimSearch-ST is computationally less expen-

sive than the sequential scan because (1) the
branch-pruning method reduces the search space
and (2) the suffixes with common prefixes share the
cumulative distance tables during index traversal.
Thus, SimSearch-ST has the complexity
Oðm %L2jQj=RdRpÞ; where RdðX1Þ is the reduction
factor saved by sharing the cumulative distance
tables, and RpðX1Þ is the reduction factor gained
from the branch pruning.

Rd grows as the length and the number of
common edges of a suffix tree increase. Given k

suffixes, s1;y; sk; whose first t elements are the
same, the construction of k cumulative distance
tables requires the computation of js1jjQj þ?þ
jsk jjQj cells. However, it is reduced to tjQj þ ðjs1j �
tÞjQj þ?þ ðjsk j � tÞjQj if the cumulative distance
table for Q and the common prefix of length t is

shared by k suffixes. In this case, Rd can be
expressed as the following:

Rd ¼
js1j þ?þ jskj

ðjs1j þ?þ jskjÞ � ðk � 1Þt
:

While Rd relies upon the distribution of element
values, Rp is dependent on a distance tolerance e
specified by the user. That is, Rp increases as e
decreases. If e is so small that just one or two
subsequences can be answers, only the topmost
part of the index may be visited. In another
extreme case where e is large enough for all
subsequences to be answers, every node of the
index needs to be visited, thus making Rp ¼ 1: In
the worst case where there is no common
subsequence and the branch pruning cannot help,
both values of Rd and Rp are 1, and therefore the
complexity of SimSearch-ST becomes the same as
that of the sequential scan.

5. Similarity search using categorization

This section introduces the concept of categor-
ization to decrease the number of possible values
that elements can take, hence increasing the length
and the number of common subsequences. As
explained in the previous section, the index size
and the query processing time reduce as the length
and the number of common subsequences in-
crease.
To get the categorized representation of element

values, we first generate the set of categories and
determine their ranges. Then we convert every
element value into the symbol of the correspond-
ing category. For example, given two categories
C1 ¼ ½0:1; 3:9� and C2 ¼ ½4:0; 10:0�; the sequence
Y ¼ /5:27; 2:56; 3:85S is transformed to Y C =
/C2;C1;C1S where Y C denotes the sequence
obtained from Y by categorization. After convert-
ing elements into discrete symbols, we build a
suffix tree from a set of symbol sequences. The
resultant tree is called a Suffix Tree with Categor-
ization (STC). It is also constructed by performing
a series of binary merges.

S. Park et al. / Information Systems 28 (2003) 867–883 873

5.1. Categorization method

We take the maximum-entropy categorization
method for its simple implementation, albeit other
categorization approaches like the type abstrac-
tion hierarchy (TAH) [25] and the k-means
algorithm may also be used. The entropy [26] of
a categorization is defined as: H ¼
�
Pk

i¼1 PðCiÞ logðPðCiÞÞ where k is the number
of categories given as an input parameter and
PðCiÞ is the probability that an element is included
in the ith category. To minimize the loss of the
information about sequences, this categorization
method decides the category boundaries that
generate the maximum entropy value. The bound-
aries can be determined easily by making all
categories include the same number of elements
ðPðC1Þ ¼ PðC2Þ ¼ ? ¼ PðCkÞÞ:

5.2. Modified distance function: Dtw�lb

Whereas the edges of a suffix tree are labeled
with numeric values, the edges of an STC are
labeled with symbols. As a result, the exact time-
warping distance between a query sequence and
any subsequence contained in an STC cannot be
computed. Therefore, we introduce a new distance

function Dtw�lb that returns a lower-bound dis-
tance of Dtw:

Definition 2. Given any two non-null sequences X

and Y ; the distance function Dtw�lbðX ;Y CÞ that
returns a lower-bound distance of DtwðX ;Y Þ is
defined as follows:

Dtw�lbðX ;Y CÞ

¼
ffi
Dbase�lbðX ½1�;Y C ½1�ÞpþMinStutterDistðX ;Y CÞpp

p
;

Dbase�lbðX ½1�;Y C ½1�Þ

¼

0 if Y C ½1�:lbpX ½1�pY C ½1�:ub

X ½1� � Y C ½1�:ub if X ½1Y C ½1�:ub;

Y C ½1�:lb � X ½1� if X ½1�oY C ½1�:lb;

8><
>:

MinStutterDistðX ;Y CÞ

¼ min

Dtw�lbðX ;Y C ½2 : ��Þ;

Dtw�lbðX ½2 : ��;Y CÞ;

Dtw�lbðX ½2 : ��;Y C ½2 : ��Þ:

8><
>:

In Definition 2, Y C ½1�:lb and Y C ½1�:ub express the
range of the category denoted by the symbol
Y C ½1�: As shown in Fig. 3, Dtw�lbðX ½1�;Y C ½1�Þ
returns the possible minimum distance between
X ½1� and Y C ½1�:

YC[1].ub

X[1]

X[1]

X[1]

possible minimum distance
= 0

possible minimum distance
= X[1] – YC[1].ub

possible minimum distance
= YC[1].lb – X[1]

YC[1].ub

YC[1].ub

YC[1].lb

YC[1].lb

YC[1].lb

Fig. 3. Minimum distances between X ½1� and Y C ½1�: Y C ½1�:lb and Y C ½1�:ub express the range of the category denoted by the symbol

Y C ½1�:

S. Park et al. / Information Systems 28 (2003) 867–883874

To guarantee no false dismissal, the distance
returned by Dtw�lbðX ;Y CÞ should always be
less than or equal to the distance computed
by DtwðX ;Y Þ; as stated by the following
theorem.

Theorem 2. For any two non-null sequences X and

Y ; the following inequality holds:

Dtw�lbðX ;Y CÞpDtwðX ;Y Þ:

Proof. The proof is shown in [22]. &

5.3. Search algorithm: SimSearch-STC

The algorithm SimSearch-ST needs to be
modified to reflect the categorized representation
of element values. Our proposed search algorithm
SimSearch-STC is shown in Algorithm 3. Notice
that element values of a query sequence are not
converted to discrete symbols.

Algorithm 3: Similarity search algorithm Sim-

Search-STC

Input: root node R; query sequence Q; distance
tolerance e
Output: answerSet
cumDistTable ’ NULL;
candidateSet ’ Filter-STC (R; Q; e; cumDistTa-
ble);
answerSet ’ PostProcess (candidateSet, Q; e);
return answerSet;

To find the candidate subsequences whose lower-
bound time-warping distances to a query sequence
Q are within e; Filter-STC is called recursively.
Filter-STC is the same as Filter-ST except that the
former uses Dtw�lb to build a cumulative distance
table while the latter uses Dtw: Since a lower-bound
time-warping distance is used for filtering, the
dissimilar subsequences whose actual time-warp-
ing distances to Q are larger than e may be
included in the candidate answer set. These
subsequences are called false alarms [1,3]. To
detect and discard false alarms, PostProcess
retrieves the actual data subsequences correspond-
ing to each candidate answer and computes their
time-warping distances using Dtw:

The complexity of SimSearch-STC is repre-
sented as Oðm %L2jQj=RdRp þ n %LjQjÞ where n is the
number of subsequences requiring the post-proces-
sing. Hence, the left expression represents the cost
for filtering and the right expression for post-pro-
cessing. Compared to the algorithm SimSearch-

ST, SimSearch-STC has a larger value of Rd at
the expense of the cost for post-processing.

6. Similarity search with sparse suffix tree

A suffix tree that stores only a subset of suffixes
is called a sparse suffix tree [27]. Since the size of a
suffix tree is linear in the number of leaf nodes, a
sparse suffix tree is smaller than an original suffix
tree. Suffixes inserted into a tree are called stored

suffixes, and suffixes not inserted into a tree are
called non-stored suffixes. The reduction of the
index size by storing only a subset of suffixes is
measured by the compaction ratio r ð0pro1Þ that
is defined as follows:

r ¼
the number of non-stored suffixes

the number of all suffixes
:

The value of r is highly dependent on the number
of distinct values that elements can take. This
section proposes an indexing technique Sim-

Search-SSTC that uses a Sparse Suffix Tree With
Categorization (SSTC) as an index structure to
reduce the index size and accelerate the query
processing.

6.1. Index construction

Similar to STC, an SSTC is built from sequences
of symbols. However, unlike STC, only suffixes
whose first values are different from those of the
immediately preceding suffixes are stored in an
SSTC. That is, Y C ½i : �� is stored in a SSTC only if
Y C ½i�aY C ½i � 1�: For example, given Y C ¼
/A;A;A;C;B;BS; only three suffixes, Y C ½1 : ��;
Y C ½4 : ��; and Y C ½5 : ��; are stored in an SSTC.
Therefore, the compaction ratio r ¼ 3

6 ¼ 0:5:

6.2. Modified distance function: Dtw�lb2

While we can get the distance between X and
any prefix of Y C by reading the rightmost columns

S. Park et al. / Information Systems 28 (2003) 867–883 875

of the cumulative distance table for X and Y C ;
there is no direct way to compute the distance
between X and any suffix of Y C except for
building a new distance table. However, if
the first t elements of Y C have the same value,
we can obtain a lower-bound distance of
Dtw�lb2ðX ;Y C ½i : ��Þ ði ¼ 1;y; tÞ using a new
distance function Dtw�lb2ðX ;Y C ½i : ��Þ:

Definition 3. For any two non-null sequences X

and Y C ; if the first t elements of Y C have the
same value, then the distance function
Dtw�lb2ðX ;Y C ½i : ��Þ ði ¼ 1;y; tÞ that returns a
lower-bound distance of Dtw�lbðX ;Y C ½i : ��Þ is
defined as follows:

Dtw�lb2ðX ;Y C ½i : ��Þ

¼ Dtw�lbðX ;Y CÞ � ði�1Þ*Dbase�lbðX ½1�;Y C ½1�Þ:

If we know the value of Dtw�lbðX ;Y CÞ; then
Dtw�lb2ðX ;Y C ½i : ��Þ can be computed with com-
plexity Oð1Þ: The distance returned from
Dtw�lb2ðX ;Y C ½i : ��Þ is always less than or equal
to Dtw�lbðX ;Y C ½i : ��Þ; as stated in the following
theorem.

Theorem 3. For any two non-null sequences X and

Y C ; if the first t elements of Y C have the same

value, then the following inequality holds for

i ¼ 1;y; t:

Dtw�lb2ðX ;Y C ½i : ��ÞpDtw�lbðX ;Y C ½i : ��Þ:

Proof. The proof is shown in [22]. &

6.3. Search algorithm: SimSearch� SSTC

The proposed similarity search algorithm Sim-

Search-SSTC consists of the filtering stage and
the post-processing stage. To filter out dissimilar
subsequences, the filtering algorithm Filter-SSTC

is called recursively. Filter-SSTC uses Dtw�lb for
calculating the distances between Q and the
subsequences contained in stored suffixes, and
Dtw�lb2 for computing the distances between Q and
the subsequences contained in non-stored suffixes.
The procedures for finding candidates and pruning
branches are identical to those of Filter-STC.

During the post-processing, Dtw is applied to the
subsequences corresponding to each candidate.
A detailed description of the algorithm Sim-

Search-SSTC is in [22].
The complexity of SimSearch-SSTC is

Oðð1� rÞm %L2jQj=RdRp þ rm %L þ n %LjQjÞ where n is
the number of subsequences requiring the post-
processing and r is the compaction ratio of the
index. Thus ð1� rÞm %L is the number of stored
suffixes, and rm %L is the number of non-stored
suffixes. Comparing with SimSearch-STC, Sim-
Search-SSTC tries to improve the performance by
reducing the number of cumulative distance tables
generated during the tree traversal, at the cost of
larger n:

7. Experimental evaluation

To study the performance and scalability of the
proposed similarity search algorithms, we con-
ducted extensive experiments with real and syn-
thetic data sets. This section first describes the
evaluation environment and then chooses the one
from the proposed similarity search algorithms
after comparing them in terms of space and time
efficiency. We then compare the performance and
scalability with the previous approaches.

7.1. Evaluation environment

For performance evaluation, we implemented
the proposed algorithms in C and Cþþ program-
ming languages and then compared them with the
previous approaches using stock, electrocardio-
gram, and random-walk data sets. All the experi-
ments were performed under Solaris 7 operating
system.

7.1.1. Approaches to be compared

The sequential scan [6] and the LB-scan [4] were
selected as candidate algorithms, because they use
the time-warping distance metric and support the
subsequence search without false dismissals. The
approaches using the piece-wise linear segments
[14–16] were excluded due to the possibility of false
dismissals.

S. Park et al. / Information Systems 28 (2003) 867–883876

(1) The sequential scan method [6] reads every
sequence from the database and applies a
dynamic programming technique to build a
cumulative distance table. The number of
cumulative distance tables to be generated is
the same as the number of suffixes contained
in a data sequence. This method does not
require post-processing.

(2) The LB-Scan method [4] reads every sequence
from the database and computes a lower-
bound distance function Dlb to discard non-
qualifying sequences without false dismissals.
This method reduces the CPU cost from
OðjX jjY jÞ to OðjX j þ jY jÞ because the compu-
tation of DlbðX ;Y Þ is linear to both jX j and
jY j: Since a lower-bound distance function is
used for filtering, post-processing is required.

(3) Proposed methods perform a series of binary
merges to build an index. Each node of a suffix
tree stores the location of its first right sibling
in addition to the locations of its children. As a
result, only the nodes on the path from the
root to the node being inspected need to reside
in main memory during the index traversal.
Whereas SimSearch-ST does not require
post-processing, SimSearch-STC and Sim-

Search-SSTC require post-processing.

7.1.2. Data set

We used one synthetic and two real data sets for
the experiments. The S&P 500 stock data se-
quences (http://biz.swcp.com/stocks) were based
on their daily closing prices. The number of and
the average length of data sequences were 545 and
232, respectively. The size of this data set was
851 kbytes:
The electrocardiogram data sequences were also

used in the experiments. An electrocardiogram is a
recording of the heart which allows for doctors to
evaluate the patient’s cardiac condition such as
irregular heart beats and rhythm. The number and
the average length of electrocardiogram data
sequences were 340 and 659, respectively. The size
of this data set was 2155 kbytes:
The random-walk data sequences were used for

scalability testing. The expression generating these
data sequences was defined as X ½i� ¼ X ½i � 1� þ Zi

where Zi ði ¼ 1; 2;yÞ are independent, identically
distributed, random variables. The number of
random-walk data sequences and their average
length were determined by the purpose of each
scalability testing.
One hundred query sequences were generated by

the following procedure from each data set: (1)
select a random sequence from the database; (2)
extract a random subsequence from that data
sequence; (3) take a random value from an
appropriate range1 for every element of the
subsequence; and (4) add the value to its corre-
sponding element.

7.1.3. System configuration

The hardware platform for the experiments was
the Sun UltraSparc-10 workstation equipped with
333 MHz UltraSparc-IIi CPU, 512 MB RAM,
and 26 GB SCSI hard disk with 10,000 RPM.
The operating system used was Solaris 7.

7.2. Space and time efficiency of the proposed

algorithms

Using the S&P stock data sequences, we
compared the space and time efficiency of the
proposed algorithms. Fig. 4 shows the size of the
proposed indices. Whereas the size of a suffix tree
(ST) is independent of the number of categories,
the size of STC and SSTC becomes larger as the
number of categories increases. STC and SSTC are
smaller than ST due to the increased number of
common subsequences, and SSTC is smaller than
STC due to the decreased number of suffixes
stored in the index.
Fig. 5 shows the average query processing time

of the proposed search algorithms with a selected
number of categories. The similarity metrics were
the L1-based, the L2-based and the LN-based
time-warping distances. A distance tolerance was
adjusted for each query to retrieve 10�3% of the
total number of data subsequences. SimSearch-
STC and SimSearch-SSTC speed up on the whole
as the number of categories increases. However,
their executions slow down when the number of

1The range is ½�std=10; std=10�; where std is the standard

deviation of the sequence.

S. Park et al. / Information Systems 28 (2003) 867–883 877

http://biz.swcp.com/stocks

categories exceeds a certain threshold. This thresh-
old value may be regarded as the optimal number
of categories. For example, when the distance
function is the L1-based time-warping distance,
250 is the optimal number of categories for
SimSearch-STC and 80 is for SimSearch-SSTC.
Let us first consider the average query proces-

sing time with the L1-based time-warping distance
metric. SimSearch-STC and SimSearch-SSTC

are slower than SimSearch-ST when the number
of categories is small (i.e.p20). This is because the
lower-bound distance functions used in Sim-

Search-STC and SimSearch-SSTC lose their

tightness to the original distance function when
the number of categories is too few. However,
SimSearch-STC and SimSearch-SSTC become
faster than SimSearch-ST when the number of
categories exceeds 20. SimSearch-STC performs
slightly better than SimSearch-SSTC under the
same number of categories. We obtained similar
results with the L2-based and the LN-based time-
warping distances.
These experiments show that (1) SSTC is the

most space-effective approach, and (2) Sim-

Search-STC is the most time-effective approach
unless the number of categories is too few. With all
these results, we decided SimSearch-SSTC as the
best one because it solves the size problem of a
suffix tree while preserving the good performance.
The next section compares SimSearch-SSTC with
the previous similarity search algorithms using the
stock and electrocardiogram data sets.

7.3. Performance comparisons

According to the results of Section 7.2, we chose
SimSearch-SSTC and compared it with the LB-
Scan and the sequential scan. Figs. 6–11 shows
their average query processing time with the
increasing number of answers (i.e., increasing
values of a distance tolerance). The number of
categories used by our approach was 20.

853
2,248
6,851

18,038
28,409
37,466
44,988
53,065
59,723

10,459
15,732
25,778
40,982
51,511
59,512
65,859
72,484
77,652

157,230

10
20
40
80

120
160
200
250
300

SSTCSTCST

Index Size (Kbytes)

#categories

Fig. 4. The size of the proposed indices with selected number of

categories. Stock data sequences were used for this experiment.

17.2
6.0
2.6
2.1
2.1
2.5
2.6
3.1
3.2

45.3
17.7
8.0
5.2
5.5
6.3
7.4
9.2

10.1

38.9
15.5

8.1
6.2
6.9
8.6

10.4
12.9
16.0

22.6
9.1
3.7
2.4
1.6
1.6
1.4
1.6
1.7

22.5
9.6
4.5
3.4
2.7
2.6
2.6
2.6
2.9

24.6
12.0

7.3
4.8
4.4
4.3
4.3
4.1
4.6

2.94.710.6

10
20
40
80

120
160
200
250
300

LinfL2L1LinfL2L1LinfL2L1

SimSearch-SSTCSimSearch-STCSimSearch-ST

Average Query Processing Time (sec)

#categories

Fig. 5. The average query processing time of the proposed algorithms with selected number of categories. Stock data sequences were

used for this experiment. A distance tolerance was adjusted for each query to retrieve 10�3% of the total number of data subsequences.

S. Park et al. / Information Systems 28 (2003) 867–883878

Figs. 6 and 7 used the L1-based time-warping
distance metric with the stock and electrocardio-
gram data sets, respectively. It is clear from the
graphs that our approach consistently outper-
forms both approaches. With the stock data set,
our approach is faster than the sequential scan by
up to 18 times and the LB-scan by up to 3 times.
With the electrocardiogram data set, our approach
is faster than the sequential scan by up to 17 times
and the LB-scan by up to 6 times. Notice that the
performance benefit of our approach over the LB
scan grows larger on both data sets as the number
of answers increases.
Figs. 8 and 9 used the L2-based time-warping

distance metric with the stock and electrocardio-
gram data sets, respectively. As shown in the
figures, our approaches performs faster than both
competitors. With the stock data set, our approach
is faster than the sequential scan by up to 13 times
but the performance benefit over the LB-scan is
not conspicuous. With the electrocardiogram data
set, our approach is faster than the sequential scan
by up to 21 times and the LB scan by up to 4.5
times.
Figs. 10 and 11 used the LN-based time-warping

distance metric with the stock and electrocardio-
gram data sets, respectively. We can easily see
from the figures that our approach beats the
previous two approaches. With the stock data set,
our approach is faster than the sequential scan by
up to 40 times and the LB scan by up to 3.4 times.
With the electrocardiogram data sequences, our

0

50

100

150

200

250

1.0E-06 5.0E-06 1.0E-05 1.0E-04 1.0E-03

Sequential Scan

LB Scan

SimSearch-
SSTC

qu
er

y
pr

oc
es

si
ng

 ti
m

e
(s

ec
)

number of answers (%)

Fig. 6. Average query processing time with the increasing

number of answers. The L1-based time-warping distance was

used on the stock data sequences.

0

200

400

600

800

1000

1200

1.0E-
06

5.0E-
06

1.0E-
05

1.0E-
04

1.0E-
03

Sequential Scan

LB Scan

SimSearch-
SSTC

qu
er

y
pr

oc
es

si
ng

 ti
m

e
(s

ec
)

number of answers (%)

Fig. 7. Average query processing time with the increasing

number of answers. The L1-based time-warping distance was

used on the electrocardiogram data sequences.

0

50

100

150

200

250

1.0E-06 5.0E-06 1.0E-05 1.0E-04 1.0E-03

Sequential Scan

LB Scan

SimSearch-
SSTC

qu
er

y
pr

oc
es

si
ng

 ti
m

e
(s

ec
)

number of answers (%)

Fig. 8. Average query processing time with the increasing

number of answers. The L2-based time-warping distance was

used on the stock data sequences.

0

200

400

600

800

1000

1200

1.0E-
06

5.0E-
06

1.0E-
05

1.0E-
04

1.0E-
03

Sequential Scan

LB Scan

SimSearch-
SSTC

number of answers (%)

qu
er

y
pr

oc
es

si
ng

 ti
m

e
(s

ec
)

Fig. 9. Average query processing time with the increasing

number of answers. The L2-based time-warping distance was

used on the electrocardiogram data sequences.

S. Park et al. / Information Systems 28 (2003) 867–883 879

approach is faster than the sequential scan by up
to 108 times and the LB-scan by up to 16 times.

7.4. Scalability comparisons

To study the scalability of our approaches, we
compared the average query processing time of
SimSearch-SSTC with that of the sequential scan
and the LB scan by increasing the average length
and the number of random walk data sequences.
We first increased the average length of data

sequences from 200 to 1000 while keeping the
number of data sequences equal to 200. Then we
changed the number of data sequences from 1000
to 10,000 while maintaining their average length
equal to 200. The number of categories for both

experiments was 20 and the distance tolerance was
adjusted to retrieve 10�3% of the total number of
data subsequences.
Figs. 12, 14, and 16 show the average query

processing time of the three methods with the
increasing average length of data sequences. They
used the L1-based, the L2-based and the LN-based
time-warping distances, respectively. As seen from
these figures, the performance improvement of
SimSearch-SSTC is maintained with any value of
p in the Lp-based time-warping distance metric
even when sequences are very long.
Figs. 13–17 show the average query processing

time of the three methods with the increasing
number of data sequences. They used the L1-
based, the L2-based and the LN-based time-

0

50

100

150

200

250

300

1.0E-06 5.0E-06 1.0E-05 1.0E-04 1.0E-03

Sequential Scan

LB Scan

SimSearch-
SSTC

qu
er

y
pr

oc
es

si
ng

 ti
m

e
(s

ec
)

number of answers (%)

Fig. 10. Average query processing time with the increasing

number of answers. The LN-based time-warping distance was

used on the stock data sequences.

0

200

400

600

800

1000

1200

1400

1.0E-
06

5.0E-
06

1.0E-
05

1.0E-
04

1.0E-
03

Sequential Scan

LB Scan

SimSearch-
SSTC

qu
er

y
pr

oc
es

si
ng

 ti
m

e
(s

ec
)

number of answers (%)

Fig. 11. Average query processing time with the increasing

number of answers. The LN-based time-warping distance was

used on the electrocardiogram data sequences.

1

10

100

1000

10000

200 400 600 800 1000

Sequential Scan

LB Scan

SimSearch-SSTC

qu
er

y
pr

oc
es

si
ng

 ti
m

e
(s

ec
)

length of sequences

Fig. 12. Average query processing time with the increasing

average length of data sequences. The L1-based time-warping

distance was used on the random walk data set.

1

10

100

1000

10000

1000 3000 6000 10000

Sequential Scan

LB Scan

SimSearch-SSTC

qu
er

y
pr

oc
es

si
ng

 ti
m

e
(s

ec
)

number of sequences

Fig. 13. Average query processing time with the increasing

number of data sequences. The L1-based time-warping distance

was used on the random walk data set.

S. Park et al. / Information Systems 28 (2003) 867–883880

warping distance metrics, respectively. As seen
from these figures, the performance improvement
of SimSearch-SSTC is maintained with any value
of p in the Lp-based time-warping distance metric
even when the database contains a large number of
data sequences.

8. Conclusion

This paper presented an indexing method based
on a disk-based suffix tree, for fast retrieval of
similar subsequences without false dismissals.
Because the sampling rates and the lengths of
sequences may be different, the proposed method
uses the time-warping distance as a similarity
measure that allows stretching or compressing of
sequences along the time axis. Extensive experi-
ments with real and synthetic data sequences
revealed that the proposed approach significantly
outperforms the sequential and LB scan ap-
proaches and scales well in a large volume of
sequence databases. The contributions of our
work are: (1) extending the exact search algorithm
of a suffix tree to the similarity search algorithm
with the time-warping similarity measure, (2)
applying the idea of categorization and sparse
indexing to reduce the index size and to accele-
rate the query processing, and (3) introducing
the search algorithms that use the lower-bound
distance functions and the branch-pruning

1

10

100

1000

10000

1000 3000 6000 10000

Sequential Scan

LB Scan

SimSearch-SSTC

qu
er

y
pr

oc
es

si
ng

 ti
m

e
(s

ec
)

number of sequences

Fig. 15. Average query processing time with the increasing

number of data sequences. The L2-based time-warping distance

was used on the random walk data set.

1

10

100

1000

10000

200 400 600 800 1000

Sequential Scan

LB Scan

SimSearch-SSTC

qu
er

y
pr

oc
es

si
ng

 ti
m

e
(s

ec
)

length of sequences

Fig. 16. Average query processing time with the increasing

average length of data sequences. The LN-based time-warping

distance was used on the random-walk data set.

1

10

100

1000

10000

1000 3000 6000 10000

Sequential Scan

LB Scan

SimSearch-SSTC

qu
er

y
pr

oc
es

si
ng

 ti
m

e
(s

ec
)

number of sequences

Fig. 17. Average query processing time with the increasing

number of data sequences. The LN-based time-warping

distance was used on the random walk data set.

1

10

100

1000

10000

200 400 600 800 1000

Sequential Scan

LB Scan

SimSearch-SSTC

qu
er

y
pr

oc
es

si
ng

 ti
m

e
(s

ec
)

length of sequences

Fig. 14. Average query processing time with the increasing

average length of data sequences. The L2-based time-warping

distance was used on the random walk data set.

S. Park et al. / Information Systems 28 (2003) 867–883 881

technique to filter out dissimilar subsequences in
index space without false dismissal.
The index space can be reduced further if we

know the minimum and maximum lengths of the
queries. Using a warping window constraint [6],
we can calculate the minimum and maximum
lengths of the answers. The suffixes whose lengths
are shorter than the minimum answer length need
not be inserted into the index. For the suffixes
whose lengths are longer than the maximum, only
the prefixes whose lengths are equal to the
maximum length need to be stored in the index.
The subsequences found by similarity search can

be used for predictions, hypothesis testing, cluster-
ing and rule discovery. For example, in the
medical domain, retrieved subsequences can be
used for predicting the disease evolution patterns
of a patient; in the web environment, they can be
used to discover frequent visiting patterns of web
sites.
Our approach can be extended to the sequences

of multivariate numeric values. Multivariate va-
lues are converted into multi-dimensional cells
using multi-dimensional categorization methods
such as multiple-attribute type abstraction hier-
archy (MTAH) [25]. Then the same index con-
struction and query processing techniques are
applied to the set of converted sequences. We are
currently working in this direction for retrieving
similar medical image subsequences.

References

[1] R. Agrawal, C. Faloutsos, A. Swami, Efficient similarity

search in sequence databases, in: Proceedings of Interna-

tional Conference on Foundations of Data Organization

and Algorithms (FODO), Chicago, IL, 1993, pp. 69–84.

[2] R. Agrawal, K. Lin, H.S. Sawhney, K. Shim, Fast

similarity search in the presence of noise, scaling, and

translation in time-series databases, in: Proceedings of the

International Conference on Very Large Data Bases

(VLDB), Zurich, 1995, pp. 490–501.

[3] C. Faloutsos, M. Ranganathan, Y. Manolopoulos, Fast

subsequence matching in time-series databases, in: Pro-

ceedings of the ACM International Conference on

Management of Data (SIGMOD), Minneapolis, MN,

1994, pp. 419–429.

[4] B.-K. Yi, H.V. Jagadish, C. Faloutsos, Efficient retrieval

of similar time sequences under time warping, in:

Proceedings of the IEEE International Conference on

Data Engineering (ICDE), Orlando, FL, 1998, pp. 201–

208.

[5] L. Rabinar, B.-H. Juang, Fundamentals of Speech

Recognition, Prentice-Hall, Englewood Cliffs, NJ, 1993.

[6] D.J. Berndt, J. Clifford, Finding patterns in time series: a

dynamic programming approach, in: U.M. Fayyad, G.

Piatetsky-Shapiro, P. Smyth, R. Uthurusamy (Eds),

Advances in Knowledge Discovery and Data Mining,

AAAI/MIT, 1996, Cambridge, MA, pp. 229–248.

[7] D. Rafiei, A. Mendelzon, Similarity-based queries for time

series data, in: Proceedings of the ACM International

Conference on Management of Data (SIGMOD), Tucson,

AZ, 1997, pp. 13–24.

[8] G.A. Stephen, String Searching Algorithms, World Scien-

tific, Singapore, 1994.

[9] N. Beckmann, H. Kriegel, R. Schneider, B. Seeger, The

R	-tree: an efficient and robust access method for points

and rectangles, in: Proceedings of the ACM SIGMOD,

Atlantic City, NJ, 1990, pp. 322–331.

[10] D.Q. Goldin, P.C. Kanellakis, On similarity queries for

time-series data: constraint specification and implementa-

tion, in: Proceedings of the Constraint Programming,

Cassis, France, 1995, pp. 137–153.

[11] A. Guttman, R-trees: a dynamic index structure for spatial

searching, in: Proceedings of the ACM SIGMOD, Boston,

MA, 1984, pp. 47–57.

[12] T. Bozkaya, N. Yazdani, M. Ozsoyoglu, Matching and

indexing sequences of different lengths, in: Proceedings of

the ACM International Conference on Information and

Knowledge Management (CIKM), Las Vegas, NA, 1997,

pp. 128–135.

[13] C. Faloutsos, K. Lin, Fastmap: a fast algorithm for

indexing, data-mining and visualization of traditional and

multimedia datasets, in: Proceedings of the ACM Interna-

tional Conference on Management of Data (SIGMOD),

San Jose, CA, 1995, pp. 163–174.

[14] E.J. Keogh, M.J. Pazzani, Scaling up dynamic time

warping to massive datasets, in: Proceedings of the

Principles and Practice of Knowledge Discovery in

Databases (PKDD), Prague, 1999.

[15] E.J. Keogh, M.J. Pazzani, Scaling up dynamic time

warping for data mining applications, in: Proceedings of

the ACM International Conference on Knowledge Dis-

covery and Data Mining (SIGKDD), Boston, MA, 2000,

pp. 285–289.

[16] S. Park, D. Lee, W.W. Chu, Fast retrieval of similar

subsequences in long sequence databases, in: Proceed-

ings of the IEEE Knowledge and Data Engineering

Exchange Workshop (KDEX), Chicago, IL, 1999,

pp. 60–67.

[17] R. Agrawal, G. Psaila, E.L. Wimmers, M. Zait, Querying

shapes of histories, in: Proceedings of the International

Conference on Very Large Data Bases (VLDB), Zurich,

1995, pp. 502–514.

[18] H. Shatkay, S.B. Zdonik, Approximate queries and

representations for large data sequences, in: Proceedings

S. Park et al. / Information Systems 28 (2003) 867–883882

of the IEEE International Conference on Data Engineer-

ing (ICDE), Houston, TX, 1994, pp. 536–545.

[19] P. Bieganski, J. Riedl, J.V. Carlis, Generalized suffix trees

for biological sequence data: applications and implementa-

tion, in: Proceedings of the Hawaii International Con-

ference on System Sciences, Wailea, Hawaii, 1994.

[20] J.T. Wang, G. Chirn, T.G. Marr, B. Shapiro, D. Shasha,

K. Zhang, Combinatorial pattern discovery for scientific

data: some preliminary results, in: Proceedings of the

ACM International Conference on Management of Data

(SIGMOD), Minneapolis, MN, 1994, pp. 115–125.

[21] S. Park, S.W. Kim, J.S. Cho, S. Padmanabhan, Prefix-

querying: an approach for effective subsequence matching

under time warping in sequence databases, in: Proceedings

of the ACM International Conference on Information and

Knowledge Management (CIKM), Atlanta, GA, 2001, pp.

255–262.

[22] S. Park, W.W. Chu, J. Yoon, C. Hsu, A suffix tree for fast

similarity searches of time-warped subsequences in se-

quence databases, Technical Report UCLA-CS-TR-

990005, UCLA, 1999.

[23] K. Fukunaga, P.M. Narendra, A branch and bound

algorithms for computing k-nearest neighbors, IEEE

Trans. Comput. C-24 (7) (1975) 750–753.

[24] T. Brinkhoff, H.-P. Kriegel, R. Schneider, B. Seeger,

Multi-step processing of spatial joins, in: Proceedings of

the ACM International Conference on Management of

Data (SIGMOD), Minneapolis, MN, 1994, pp. 237–246.

[25] W.W. Chu, K. Chiang, Abstraction of high level concepts

from numerical values in databases, in: Proceedings of the

AAAI Workshop on Knowledge Discovery in Databases,

Seattle, WA, 1994, pp. 133–144.

[26] C.E. Shannon, W. Weaver, The Mathematical Theory of

Communication, University of Illinois Press, Champaign,

IL, 1964.

[27] J. Karkkainen, E. Ukkonen, Sparse suffix trees, in:

Proceedings of Computing and Combinatorics (CO-

COON), Hong Kong, 1996, pp. 219–230.

S. Park et al. / Information Systems 28 (2003) 867–883 883

	Similarity search of time-warped subsequences via a suffix tree
	Introduction
	Related work
	Time-warping distance
	Similarity search using a suffix tree
	Index construction
	Search algorithm: SimSearch-ST
	Algorithm complexity

	Similarity search using categorization
	Categorization method
	Modified distance function: Dtw-lb
	Search algorithm: SimSearch-STC

	Similarity search with sparse suffix tree
	Index construction
	Modified distance function: Dtw-lb2
	Search algorithm: SimSearch-SSTC

	Experimental evaluation
	Evaluation environment
	Approaches to be compared
	Data set
	System configuration

	Space and time efficiency of the proposed algorithms
	Performance comparisons
	Scalability comparisons

	Conclusion
	References

