
ARTICLE IN PRESS
Information Systems 29 (2004) 641–652
$Recommend

pacbell.net).
$$This work w

Project in 2003.

*Correspondin

E-mail addre

0306-4379/03/$ -

doi:10.1016/S030
Trie for similarity matching in large video databases$,$$

Sanghyun Parka,*, Ki-Ho Hyunb

a Department of Computer Science and Engineering, Pohang University of Science and Technology (POSTECH), Pohang, South Korea
b School of Computer and Information Engineering, YoungSan University, South Korea

Received 4 November 2002; received in revised form 1 May 2003; accepted 1 May 2003

Abstract

Similarity matching in video databases is of growing importance in many new applications such as video clustering

and digital video libraries. In order to provide efficient access to relevant data in large databases, there have been many

research efforts in video indexing with diverse spatial and temporal features. However, most of the previous works

relied on sequential matching methods or memory-based inverted file techniques, thus making them unsuitable for a

large volume of video databases. In order to resolve this problem, this paper proposes an effective and scalable indexing

technique using a trie, originally proposed for string matching, as an index structure. For building an index, we convert

each frame into a symbol sequence using a window order heuristic and build a disk-resident trie from a set of symbol

sequences. For query processing, we perform a depth-first traversal on the trie and execute a temporal segmentation. To

verify the superiority of our approach, we perform several experiments with real and synthetic data sets. The results

reveal that our approach consistently outperforms the sequential scan method, and the performance gain is maintained

even with a large volume of video databases.

r 2003 Elsevier Ltd. All rights reserved.

Keywords: Indexing technique; Similarity matching; Video databases; Trie; Window order heuristic; Window-based feature
1. Introduction

In recent years, the growth of the amount
of video data in multimedia databases has been
tremendous. Similarity matching in video
databases is of growing importance in many
new applications such as video clustering and
ed by Dr. Felipe Cariño. Jr. (fcarino@

as supported in part by the Brain Korea 21

g author.

ss: sanghyun@postech.ac.kr (S. Park).

see front matter r 2003 Elsevier Ltd. All rights rese

6-4379(03)00046-2
digital video libraries. In order to provide effective
and efficient access to relevant data in large
databases, there have been many research
efforts [1–8] in indexing of video databases with
features such as colors, textures, semantics, and
motions.

A large number of previous video indexing
approaches depend on the sequential scan method
to retrieve similar videos in a database. Mohan [9]
and Vailaya et al. [10] proposed video sequence
matching methods using action similarity and the
combination of image content and image motion,
respectively. Lienhart et al. [11] and Sanchez et al.
[12] used color coherence vectors and principal
rved.

mailto:fcarino@pacbell.net
mailto:fcarino@pacbell.net


ARTICLE IN PRESS

S. Park, K.-H. Hyun / Information Systems 29 (2004) 641–652642
components of color histograms, respectively, for
detecting similar commercial video clips. Adjeroh
et al. [13] employed the vstring representation for
video sequences and introduced vstring edit

distance as a similarity indicator. Ardizzone et al.
[3] extracted a single MPEG motion vector from
each 16 � 16 sub-image, and Meng and Chang [6]
used low-level motion features such as zoom and
pan of camera. Since all the works mentioned
above use the sequential scan method, their
performance deteriorates when the database is
large.

Squire et al. [14] proposed the use of inverted
file techniques for feature-based image retrieval,
and Hampapur et al. [8] applied the inverted
file techniques to media tracking. Since both
approaches keep the inverted files in main-
memory during the query processing, they
are not suitable for a large volume of video
databases.

In the area of string matching, a trie [15] has
been extensively used as an index structure to
find the strings that are exactly or approximately
matched to a given query string. A trie is also
an efficient index structure for both multimedia
and time-series data because it does not have
the dimensionality curse problem. Merrett et al. [16]
employed a trie for indexing a set of spatial
data objects and Park et al. [17,18] proposed to
use a suffix tree [15], a trie constructed from the
suffixes of strings, for subsequence matching
problem.

In this paper, we propose an effective and
scalable indexing technique for similarity matching
in large video databases using a trie as an index
structure. Assuming that all video frames are
divided by the same number of windows, we do
the following to build an index: (1) extract a
feature from each window and convert it into
a discrete symbol, (2) convert each frame into a
symbol sequence using a window order heuristic,
and (3) build a disk-resident trie from a set of
symbol sequences. For query processing, we do the
following: (1) take the first two steps of index
construction to generate a symbol sequence for
each target frame, (2) find the data frames closest
to each target frame by performing a depth-first
traversal on the trie, and (3) execute a temporal
segmentation to find the videos or sub-videos
similar to a target video.

This paper is organized as follows. Section 2
explains the two features employed in this paper,
and Section 3 describes our index construction and
query processing methods. Section 4 evaluates
the proposed approach through experiments in
comparison with the sequential scan method.
Finally, Section 5 summarizes and concludes the
paper.
2. Feature extraction

Since we divide every frame into multiple
windows, we take window-based feature extrac-
tion methods. This section describes the two
window-based features, a motion feature and an
ordinal feature, employed in this paper. We
assume that all the data videos are already
digitized before coming into the indexing stage.
The detailed description on the video digitiza-
tion process, manipulation of video source format,
and the video compression standards can be found
in [19].

2.1. Motion feature

Motion [20,21] is an essential feature of video
sequences. By analyzing the motions embedded in
a video sequence, we can extract its unique
temporal information. The algorithms for estimat-
ing the displacement vectors of moving objects can
be roughly classified into the three groups such as
the optical-flow-based approach, the feature-based
approach, and the window-matching-based ap-
proach. We employ the window-matching-based
approach since it is well suited to our indexing
method.

Let Ft and Ftþ1 be the current frame and its
subsequent frame, respectively. The frames are
partitioned into multiple windows and a motion
vector is estimated for each window. To find the
displacement in Ftþ1 for a point ðx; yÞ in Ft; the
surrounding window of the point is compared to
the pixels in the search area. The best match is
found according to the criterion of the minimum
mean-square error. Then, the direction of the



ARTICLE IN PRESS

S. Park, K.-H. Hyun / Information Systems 29 (2004) 641–652 643
motion vector is quantized into q directions or
levels. In addition to the q directions, if the motion
vector of a window has zero magnitude,
the window can also be assigned a level 0.
Fig. 1 shows the steps of the motion estimation
process.

2.2. Ordinal feature

We employ the ordinal measure [9,22] to capture
the spatial information of a video sequence. The
ordinal variable is drawn from a discrete ordered
set like the grades in schools. The ratio between
two measurements is not of consequence; only
their relative ordering is relevant. The relative
ordering between measurements is expressed by
their ranks. A rank permutation is obtained by
(a) Motion vector estimation (b) Quantization of motion vector

4

3

2

5

6

7

8

Ft+1

Ft

Motion VectorSuccessive Frames

0 1

Fig. 1. Motion estimation process.

(a) average intensity value 
    of each window in a frame

25.3

(b) ordinal features in a frame

80.2 89.8

152.3 93.2 125.7

160.3 225.3 230.6

1 2 3

6 4 5

7 8 9

Fig. 2. Example of ordinal measure.
sorting the sample in ascending order and labeling
them using integers ½1; 2; 3:::::m�; m being the
size of the sample. The ordinal measure has the
advantage that it is less sensitive to a pixel
variation. In our application, the average
gray level in each window is viewed as an ordinal
variable. The set of average intensities is sorted in
ascending order and the rank is assigned to
each window of a frame. Fig. 2 shows an
example.
3. Indexing method

This section defines the problem we are going to
solve, and describes our index construction and
query processing methods.



ARTICLE IN PRESS

S. Park, K.-H. Hyun / Information Systems 29 (2004) 641–652644
3.1. Problem definition

Let us first explain the notations and the
similarity measures used in this paper. V ¼
/V ½1�;y;V ½n�S denotes a video with n frames
and F ¼ /F ½1�;y;F ½m�S denotes a frame with m

windows. The distance of any two frames is
defined as the number of window pairs whose
distances are beyond a noise threshold. More
specifically, given a distance or noise threshold e;
the distance of any two frames Fi and Fj with m

windows is defined as the number of window pairs
ðFi½h�;Fj½h�Þ ð1phpmÞ satisfying the inequality
jFi½h� 	 Fj½h�j > e: The distance of Fi and Fj

becomes 0 when every window in Fi is within e
from the corresponding window in Fj and becomes
m when the distance of every window pair is larger
than e:

Given a target video Vt ¼ /Vt½1�;y;Vt½nt�S
and a data (sub-) video Vd ¼ /Vd ½1�;y;Vd ½nd �S;
their similarity is defined as the number k of such
frame pairs ðVt½ih�;Vd ½jh�Þ ð1phpk; 1pihpnt;
1pjhpndÞ that (1) Vd ½jh� is the data frame most
similar to the target frame Vt½ih�; and (2) they
preserve the temporal coherence [8] (that is,
ih	1pih and jh	1pjh).

The proposed similarity measure is exactly
same as the one proposed by Hampapur et al. [8]
except for a noise threshold e used in the defini-
tion of frame distance. Our similarity measure
A

ID(Y)

A

B

B

ID(X)

B

B

B

(a) Trie from
    X = <A,B,B,B> and
    Y = <A,A,B,B>

Fig. 3. Examp
enables accurate video matching even when
videos have different frame rates, and gives
end users more flexible control over frame
similarity.

Then, the problem we are going to solve is
defined as follows: Given a target video Vt; a

noise threshold e; and a set of data videos stored

in a database, we want to find the k data sub-

videos Vd ½p : q� most similar to Vt: Here, Vd ½p : q�
represents the sub-video of VdC containing the
frames in positions p through q:

3.2. Index construction

Our indexing approach uses a trie, which
was originally proposed for string matching. A trie

is a tree structure used for indexing a set of
keywords. The internal nodes are empty and
the edges store symbols. A path from the root to a
leaf represents a symbol sequence inserted into
a trie. Usually the leaf nodes store the identifiers
of symbol sequences. A trie holds all the informa-
tion contained in the original symbol sequences
but common prefixes are stored only once.
Thus, there is a large potential for compression if
symbol sequences contain a large number of
common prefixes and the lengths of common
prefixes are long. Fig. 3(a) shows the trie con-
structed from two symbol sequences X ¼
/A;B;B;BS and Y ¼ /A;A;B;BS; and Fig. 3(b)
B

ID(Reverse(Y))

B

A

A

ID(Reverse(X))

B

A

(b) Trie from
    Reverse(X) = <B,B,B,A> and
    Reverse(Y) = <B,B,A,A>

le tries.



ARTICLE IN PRESS

S. Park, K.-H. Hyun / Information Systems 29 (2004) 641–652 645
shows the trie from ReverseðX Þ ¼ /B;B;B;AS
and ReverseðY Þ ¼ /B;B;A;AS:

Now let us describe our index construction
method. As shown in Fig. 4, it consists of the three
steps: pre-processing, symbol sequence generation,
and trie construction.

3.2.1. Pre-processing

The pre-processing steps of an index construc-
tion include windowing, feature extraction, and
symbolization.

Step 1 (windowing): We divide each frame into a
fixed number (for example, 225) of windows.
It is not required that all windows have the same
size. For example, if we know that the center
area of a frame is more important than the other
areas, then we may generate more windows in
the center area. That is, the windows in the center
area may become smaller than those in the other
areas.
Window-1
A: 80%

(a) dominant symbols and
    their occurrence ratios

Window-2
B: 71%

Window-3
B: 95%

Window-4
A: 64%

Window-5
A: 54%

Window-6
B: 67%

Window-7
C: 85%

Window-8
C: 43%

Window-9
C: 73%

Fig. 5. Window reading ord

set of
videos

Windowing

Feature
Extraction

Symbolization

Pre-Processing

Fig. 4. Index const
Step 2 (feature extraction): From each window,
we compute a motion feature or an ordinal feature
explained in Section 2.

Step 3 (symbolization): We convert each
motion or ordinal feature into the corresponding
symbol.

3.2.2. Symbol sequence generation

To generate a symbol sequence for each frame,
this step reads the windows of a frame in the pre-
defined order. Notice that the trie becomes more
compact when symbol sequences contain more and
longer common prefixes. For example, let us
compare the two tries in Fig. 3. Since the common
prefix of ReverseðX Þ and ReverseðY Þ is longer than
that of X and Y ; the trie from ReverseðX Þ and
ReverseðY Þ has fewer nodes.

To maximize the number and the length of
common prefixes, we use the following heuristic:
(1) for each window, we determine the dominant
symbol and compute its occurrence ratio, and (2)
(b) window reading order

3 5 1

7 8 6

2 9 4

er with nine windows.

Symbol
Sequence
Generation

Trie
Construction

trie

ruction steps.



ARTICLE IN PRESS

S. Park, K.-H. Hyun / Information Systems 29 (2004) 641–652646
we rank the windows according to the occurrence
ratios of their dominant symbols. Then the
window reading order is determined by this
ranking order. We call this heuristic a window

order heuristic. Fig. 5(a) shows nine windows with
their dominant symbols and their occurrence
ratios, and Fig. 5(b) shows the window reading
order determined by our heuristic.

3.2.3. Trie construction

This step makes an entry for each frame and
inserts it into a trie. The index entry for the pth
frame of a video Vi is denoted as (symbol-
sequence, i; p). Since every symbol sequence has
the same length, we can easily take the disk-based
trie construction method: (1) sort index entries
according to the ascending order of their symbol
sequences, and (2) append each index entry into
the trie under construction. This method keeps
only the index entry being inserted and the last
node of each level inside the main memory, thus
making our approach suitable for a large volume
of video databases.

As an example, consider the first two frames of a
video V1 and the first three frames of a video V2:
Index entries are appended according to the
ascending order of their symbol sequences: V2½3�
A

A

C

B

V2[3]

A

A

B

B

C

V2[1] V1[1]

C

C

C B

C B

A

B

B

C

C

C

A

A

B

B

Fig. 6. Trie from the
- V2½1� - V1½1� - V1½2� - V2½2�: Fig. 6 shows
the trie constructed from this data set.

* V1½1� ¼ /C;C;B;B;C;A;A;B;BS:
* V1½2� ¼ /C;C;C;B;A;C;B;B;AS:
* V2½1� ¼ /A;A;C;C;A;B;B;C;CS:
* V2½2� ¼ /C;C;C;C;A;A;B;B;BS:
* V2½3� ¼ /A;A;A;A;C;B;B;B;CS:

Since it is difficult to perform systematic disk

paging on a trie index, a trie has been considered as
a main memory data structure. However, disk
paging on a trie index can be systematic if we
exploit the fact that every index entry (or key) has
the same length in our setting and keys are inserted
into a trie according to their alphabetical orders.
More specifically, we slice the trie into layers of k

levels each, and then chop each layer into pages of
subtries. Since the trie grows along only one
direction, we can easily group the set of nodes in
the same layer to generate a new page. When a
page is guaranteed not to be touched any more
during index construction, it can be written onto
the disk safely. To locate the child page directly
from its parent page during index traversal, each
page contains the counters for the number of edges
into and out of the page layer. Our trie paging
method extends the algorithm proposed in [23]
V1[2] V2[2]

C

B C

A

C

B

B

A

A

B

B

B

A

sample data set.



ARTICLE IN PRESS

target
video,

distance
threshold

Symbol
Sequence

Generation

Index
Search

similar
sub-video

Pre-
Processing

Temporal
Segmentation

Fig. 7. Query processing steps.

S. Park, K.-H. Hyun / Information Systems 29 (2004) 641–652 647
where each node of a trie is assumed to have at
most two child nodes.

3.3. Query processing

When a target video is submitted with a noise
threshold e; we find the similar sub-videos by
taking the four steps shown in Fig. 7: pre-proces-
sing, symbol sequence generation, index search,
and temporal segmentation. During the first two
steps, we divide each target frame into the fixed
number of windows, compute a feature from each
window, and convert the feature into the corre-
sponding symbol.

3.3.1. Index search

For each target frame which is now represented
as a symbol sequence, we perform a depth-
first traversal on the trie to find the best match
which has the largest number of matching symbols
with a target frame. Two symbols are match-
ing when their difference is within a noise thresh-
old e:

The index search algorithm maintains two
global variables, BestMatch and MinNotMatch:
BestMatch stores the identifiers of the best-
matching frames found so far and MinNotMatch

keeps the number of not-matching symbols
of BestMatch: Whenever we visit the node N ;
we inspect the symbol between the node N and its
parent node. If that symbol is beyond the
noise threshold e from the corresponding symbol
of the target symbol sequence, we increase the
number of non-matching symbols NotMatchðNÞ
of the node N: If NotMatchðNÞ is still less than
MinNotMatch; then we further go down the trie
to inspect the children nodes of N: Otherwise,
we visit the sibling nodes of N: When we reach the
leaf node L whose NotMatchðLÞ is less than
MinNotMatch; we replace BestMatch with the
identifiers stored in the leaf node L and
MinNotMatch with NotMatchðLÞ: Since leaf nodes
may store multiple identifiers and different paths
may have the same number of non-matching
symbols, we may have multiple best matches for
each target frame.

The proposed index search algorithm is
shown in Algorithms 1 and 2. Here,
symbolðN ;CNiÞ is the symbol on the edge con-
necting N to its child CNi:

3.3.2. Temporal segmentation

Whenever we find the best match for each target
frame, we push it into one or more stacks
according to its video and frame numbers. Each
stack is labeled with a video number and
each element of a stack is labeled with a frame
number. For each best match Vi½p�; the temporal
segmentation step does the following: (1) find
the set of stacks labeled with i; and (2) push p

onto the set of stacks whose top elements are not
larger than p: After finishing this temporal
segmentation, we take the k stacks with the most
elements.

Suppose that a target video Vt has the five
frames whose best matches are: V1½1�; V2½10� for
Vt½1�; V2½5� and V3½1� for Vt½2�; V2½7� and V4½7�
for Vt½3�; V2½8� for Vt½4�; and V2½9� for Vt½5�: Fig. 8
shows the five stacks after temporal segmentation.
Since the second stack is taller than any other
stacks, it contains the sub-video most similar to a
target video. The starting and ending offsets of the
sub-video is obtained by the bottom and top



ARTICLE IN PRESS

stack V1 stack V2 stack V2 stack V3 stack V4

frame 1 frame 5

frame 7

frame 8

frame 9

frame 1 frame 7frame 10

Fig. 8. Five stacks for temporal segmentation.

S. Park, K.-H. Hyun / Information Systems 29 (2004) 641–652648
element values. That is, V2½5 : 9� is the most similar
answer.

4. Performance evaluation

This section presents the experimental results for
performance evaluation of the proposed approach.
Section 4.1 describes the experimental environ-
ment and Section 4.2 shows and analyzes the
experimental results.
4.1. Experimental setup

Two kinds of data videos were used for
experiments: synthetic and real data videos.
Synthetic videos were composed from synthetic
frames whose features were taken uniformly from
a finite set of integer values. The number of
synthetic data videos and their average number
of frames were decided according to the purpose of
each experiment. As a real-life example, we used
three data movies easily available on the web. The
first movie was SW: Star Wars Episode IV that is
an action movie with rapid scene changes, and the
second one was SAM: I am Sam that is a human
drama without much action. The last one was ICE:
Ice Age that is an animation movie for children.
We generated 39 sub-videos, 43 sub-videos, and 26
sub-videos from the movies SW, SAM, and ICE,
respectively, and then extracted 540 key frames
from each sub-video. Table 1 shows the detailed
information about the real data movies used in the
experiments.

For each experiment, we performed 100 queries
with the target videos generated as follows: (1)
select one randomly from data videos, (2) extract a
sub-video from the selected data video, (3) take a
random value from an appropriate range for each
window of a frame, and (4) add the value to its
corresponding window as a noise. We use an
average elapsed time of processing 100 queries as a
performance measure. To avoid buffering effect,
we cleaned up the main memory right before
executing each query.

The hardware platform for the experiments was
the IBM Personal Computer 300PL—Pentium III



ARTICLE IN PRESS

S. Park, K.-H. Hyun / Information Systems 29 (2004) 641–652 649
662 MHz system equipped with 256 MB RAM,
and the software platform was Windows NT 4.0.

For performance evaluation, we compared our
approach with the sequential scan method. The
sequential scan method reads data videos sequen-
tially to find the best matches for each target frame
and then performs the temporal segmentation
explained in Section 3. Notice that the set of
answers retrieved by our indexing method is
always identical to the set of answers obtained
by the sequential scan method. This is because the
sequential scan method measures a similarity of
any two frames using digitized ordinal or motion
features from which the trie index structure has
been built.

Table 2 summarizes the parameters used in each
experiment where (1) numWins denotes the num-
ber of windows in a frame, (2) numSyms is the
total number of quantization symbols inside a
window, (3) noiThres is the noise threshold given
by a user (4) numVids is the total number of videos
stored in the database, (5) lenVids is the average
number of frames in data videos, and lenQrys is
the number of frames in a target video.
Table 2

Parameter values for each experiment

Exp 1 Exp 2

Data set SW þ SAM þ ICE SW þ SAM þ ICE

Feature Ordinal Motion

numWins 25 225

numSyms 25 9

noiThres 0-4 0-3

numVids 108 108

lenVids 540 540

lenQrys 30 30

index size 3.9M 27.2M

Table 1

The detailed information about the real data movies used in the expe

SW SAM

Length 2 h 2 h 12 m

Format MPEG1 AVI

Size 1:16 GB 1:44 GB

Number of sub-videos 39 43
4.2. Results and analysis

Using the ordinal features of the real data
videos, Experiment 1 compares the elapsed times
of our approach and the sequential scan with the
increasing noise threshold e from 0 to 4. Experi-
ment 2 does the same thing using the motion
feature. As shown in Figs. 9 and 10, our approach
is about two times faster when using ordinal
features and about three times faster when using
motion features. Notice that our approach per-
forms better when e is large. This is because a large
e makes MinNotMatch reach its final value quickly
and thus reduces the portion of a trie touched by
index search.

Using a synthetic data set, Experiments 3 and 4
compare the elapsed times of the two approaches
with the increasing number of windows from 9 to
225 and with the increasing number of quantiza-
tion symbols from 4 to 32. As shown in Fig. 11,
both approaches require more query processing
time as the number of windows grows, but the
slope of our approach is smaller than that of the
sequential scan. As shown in Fig. 12, both
Exp 3 Exp 4 Exp 5 Exp 6

Synthetic Synthetic Synthetic Synthetic

Uniform Uniform Uniform Uniform

9-225 16 16 16

8 4-32 8 8

1 1 1 1

100 100 100-400 100

200 200 200 200-1,000

20 20 20 20

0.7-9.3M 0.9-1.0M 0.9-3.8M 0.9-4.7M

riments

ICE SW þ SAM þ ICE

in 1 h 21 min 5 h 32 min

AVI —

0:73 GB 3:33 GB

26 108



ARTICLE IN PRESS

0

20

40
60

80

100

120

140
160

180

200

el
ap

se
d 

tim
e 

(s
ec

)

0 1
distance tolerance

Sequential-
Scan

Our Method

2 3

Fig. 10. Comparison of the elapsed times with the increasing

noise threshold ðSW þ SAM þ ICE with motion features).

0

5

10

15

20

25

30

el
ap

se
d 

tim
e 

(s
ec

)

0 2 4
distance tolerance

Sequential-
Scan

Our Method

1 3

Fig. 9. Comparison of elapsed times with increasing noise

threshold ðSW þ SAM þ ICE with ordinal features).

0

10

20

30

40

50

0 50 100 150 200 250

el
ap

se
d 

tim
e 

(s
ec

)

number of windows

Sequential-Scan
Our Method

Fig. 11. Comparison of elapsed times with increasing number

of windows (synthetic data set).

0

1

2

3

4

5

0 5 10 15 20 25 30 35

el
ap

se
d 

tim
e 

(s
ec

)

number of quantization symbols

Sequential-Scan
Our Method

Fig. 12. Comparison of the elapsed times with the increasing

number of quantization symbols (synthetic data set).

0

5

10

15

20

100 150 200 250 300 350 400

el
ap

se
d 

tim
e 

(s
ec

)

number of videos

Sequential-Scan
Our Method

Fig. 13. Comparison of the elapsed times with the increasing

number of videos (synthetic data set).

S. Park, K.-H. Hyun / Information Systems 29 (2004) 641–652650
approaches show the slight increase of query
processing time although our approach has sharp
increasing pattern when the number of quantiza-
tion symbols is between 5 and 10. This verifies that
the number of common subsequences and their
average length reduce as the number of quantiza-
tion symbols increases. However, the slope be-
comes steady after the number of symbols exceeds
a certain threshold.

Using a synthetic data set, Experiments 5 and 6
compare the elapsed times of the two approaches
with the increasing number of videos from 100 to
400 and with the increasing average number of



ARTICLE IN PRESS

0

5

10

15

20

25

200 300 400 500 600 700 800 900 1000

el
ap

se
d 

tim
e 

(s
ec

)

average number of frames in videos

Sequential-Scan
Our Method

Fig. 14. Comparison of the elapsed times with the increasing

average number of frames in videos (synthetic data set).

S. Park, K.-H. Hyun / Information Systems 29 (2004) 641–652 651
frames in videos from 200 to 1,000. Figs. 13 and 14
show the experimental results. Due to the increas-
ing size of video databases, both approaches
become slow when the number of videos and their
average number frames increase. However, the
slope of our approach is smaller than that of
the sequential scan. Therefore, our approach is
more scalable and better suited for large video
databases.
5. Conclusion

Similarity matching in video databases is of
growing importance in many new applications.
Although there have been many research efforts
for providing efficient access to relevant data in
video databases, most of the previous works relied
on sequential matching methods or memory-based
inverted file techniques, thus making them un-
suitable for a large volume of video databases.

In order to resolve this problem, this paper
proposed an efficient and scalable indexing tech-
nique using a trie as an index structure. Our
contributions are: (1) adapt a trie for video
indexing, (2) introduce a window order heuristic
for reducing the index size and thus improving the
search performance, and (3) propose effective
index search and temporal segmentation algo-
rithms. To verify effectiveness and scalability of
our approach, we performed the experiments with
real and synthetic video databases. The experi-
mental results reveal that our approach consis-
tently outperforms the sequential scan method,
and the performance gain is maintained even with
a large volume of video data.

There are lots of applications whose main
operations are similarity-based searching in video
databases. Content-based video clustering, con-
tent-based video copy detection, and video on
demand (VOD) are such applications, just to name
a few. The viability of these applications heavily
depends on the ability to retrieve data efficiently

and accurately from video databases. These
applications can benefit from the proposed
approach due to its effectiveness and scalability.
References

[1] R. Tusch, H. Kosch, L. Boszormenyi, VIDEX: an

integrated generic video indexing approach, in: Proceed-

ings of ACM Multimedia, Los Angeles, CA, USA, 2000,

pp. 448–451.

[2] S. Dagtas, A. Ghafoor, Indexing and retrieval of video

based on spatial relation sequences, in: Proceedings of

ACM Multimedia, Vol. 2, Orlando, FL, USA, 1999, pp.

119–122.

[3] E. Ardizzone, M.L. Cascia, A. Avanzato, A. Bruna, Video

indexing using MPEG motion compensation vectors, in:

Proceedings of the IEEE International Conference on

Multimedia Computing System, Vol. 2, Florence, Italy,

1999, pp. 725–729.

[4] J. Wei, Z.-N. Li, I. Gertner, A novel motion-based active

video indexing method, in: Proceedings of the IEEE

International Conference on Multimedia Computing

System, Vol. 2, Florence, Italy, 1999, pp. 460–465.

[5] E. Sahouria, A. Zakhor, Motion indexing of video, in:

Proceedings of the International Conference on Image

Processing, Vol. 2, Washington, DC, USA, 1997, pp. 526–

529.

[6] J. Meng, S.-F. Chang, CVEPS—A compressed video

editing and parsing system, in: Proceedings of ACM

Multimedia, Boston, MA, USA, 1996, pp. 43–53.

[7] V. Kobla, D. Doermann, K.-I. Lin, C. Faloutsos,

Compressed domain video indexing techniques using

DCT and motion vector information in MPEG video, in:

Proceedings of the SPIE Conference on Storage and

Retrieval for Image and Video Databases V, Vol. 3022,

San Jose, CA, USA, 1997, pp. 200–211.

[8] A. Hampapur, R. Bolle, Feature based indexing for media

tracking, in: Proceedings of the IEEE International

Conference on Multimedia and Expo, Vol. 3, New York,

NY, USA, 2000, pp. 1709–1712.



ARTICLE IN PRESS

S. Park, K.-H. Hyun / Information Systems 29 (2004) 641–652652
[9] R. Mohan, Video sequence matching, in: Proceedings of

the International Conference on Acoustics, Speech and

Signal Processing, Vol. 6, Seattle, WA, USA, 1998, pp.

3697–3700.

[10] A.K. Jain, A. Vailaya, W. Xiong, Query by video clip, in:

Proceedings of the International Conference on Pattern

Recognition, Brisbane, Australia, 1998, pp. 909–911.

[11] R. Lienhart, C. Kuhmunch, W. Effelsberg, On the

detection and recognition of television commercials, in:

Proceedings of the IEEE Conference on Multimedia

Computing and Systems, Ottawa, OT, Canada, 1997, pp.

509–516.

[12] J.M. Sanchez, X. Binefa, J. Vitria, P. Radeva, Local color

analysis for scene break detection applied to TV commer-

cials recognition, in: Proceedings of the Visual 99,

Amsterdam, Holland, 1999, pp. 237–244.

[13] D.A. Adjeroh, M.C. Lee, I. King, A distance measure for

video sequence similarity matching, in: Proceedings of the

International Workshop on Multi-Media Database Man-

agement Systems, Dayton, OH, USA, 1998, pp. 72–79.

[14] D.M. Squire, H. Muller, W. Muller, Improving response

time by search pruning in content based image retrieval

system, using inverted file techniques, in: Proceedings of

the IEEE Workshop on Content Based Image and Video

Libraries, Fort Collins, CL, USA, 1999, pp. 45–49.

[15] G.A. Stephen, String Searching Algorithms, World Scien-

tific, Singapore, 1994.

[16] T.H. Merrett, H. Shang, X. Zhao, Database structures,

based on tries, for text, spatial, and general data, in:
Proceedings of the International Symposium on Coopera-

tive Database Systems for Advanced Applications, Kyoto,

Japan, 1996, pp. 507–515.

[17] H. Wang, C.-S. Perng, W. Fan, S. Park, P.S. Yu, Indexing

weighted sequences in large databases, in: Proceedings of

the IEEE International Conference on Data Engineering,

Bangalore, India, 2003, pp. 63–74.

[18] S. Park, W.W. Chu, J. Yoon, C. Hsu, Fast retrieval of

similar subsequences of different lengths in sequence

databases, in: Proceedings of the IEEE International

Conference on Data Engineering, San Diego, CA, USA,

2000, pp. 23–32.

[19] A. Bovik, Handbook of Image and Video Processing,

Academic Press, New York, 2000.

[20] A. Hampapur, K. Hyun, R. Bolle, Comparison of

sequence matching techniques for video copy detection,

in: Proceedings of the SPIE Conference on Storage

and Retrieval for Media Databases, San Jose, CA, USA,

2002.

[21] M. Ioka, M. Kurokawa, A method for retrieving

sequences of images on the basis of motion analysis, in:

Proceedings of the SPIE Conference on Image Storage and

Retrieval Systems, San Jose, CA, USA, 1992, pp. 35–46.

[22] D.N. Bhat, S.K. Nayar, Ordinal measures for image

correspondence, IEEE Trans. Pattern Anal. Mach. Intell.

20 (4) (1998) 415–423.

[23] H. Shang, Trie methods for text and spatial data on

secondary storage, Ph.D. Dissertation, McGill University,

2001.


	Trie for similarity matching in large video databases
	Introduction
	Feature extraction
	Motion feature
	Ordinal feature

	Indexing method
	Problem definition
	Index construction
	Pre-processing
	Symbol sequence generation
	Trie construction

	Query processing
	Index search
	Temporal segmentation


	Performance evaluation
	Experimental setup
	Results and analysis

	Conclusion
	References


