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ABSTRACT

Motivation: Diagnosis and prognosis of cancer and understanding
oncogenesis within the context of biological pathways is one of the
most important research areas in bioinformatics. Recently, there have
been several attempts to integrate interactome and transcriptome
data to identify subnetworks that provide limited interpretations of
known and candidate cancer genes, as well as increase classification
accuracy. However, these studies provide little information about the
detailed roles of identified cancer genes.
Results: To provide more information to the network, we constructed
the network by incorporating genetic interactions and manually
curated gene regulations to the protein interaction network. To
make our newly constructed network cancer specific, we identified
edges where two genes show different expression patterns between
cancer and normal phenotypes. We showed that the integration of
various datasets increased classification accuracy, which suggests
that our network is more complete than a network based solely
on protein interactions. We also showed that our network contains
significantly more known cancer-related genes than other feature
selection algorithms. Through observations of some examples of
cancer-specific subnetworks, we were able to predict more detailed
and interpretable roles of oncogenes and other cancer candidate
genes in the prostate cancer cells.
Availability: http://embio.yonsei.ac.kr/∼Ahn/tc.php.
Contact: sanghyun@cs.yonsei.ac.kr
Supplementary information: Supplementary data are available at
Bioinformatics online.
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1 INTRODUCTION
Diagnosis and prognosis of cancer is one of the most important
research areas in bioinformatics. Enormous efforts have been
made to identify biomarkers of cancer, and have predominantly
focused on the analysis of transcriptome data. Recently, diagnostic
and prognostic predictive performances have been improved by
incorporating interactome data (Chuang et al., 2007; Taylor et al.,
2009). Incorporating interactome data has the additional benefit that
it can suggest detailed roles of potential cancer-related genes.

Chuang et al. showed that with metastasis of breast cancer,
integration of interactome and transcriptome data can be useful to

∗To whom correspondence should be addressed.

extract coexpressed functional subnetworks, as well as to obtain
higher classification accuracy. These subnetworks contain many
known breast cancer genes that could not be detected in previous
studies which analyzed only transcriptome data.

Taylor et al. suggest that the organization of interactome data
is changed by altered gene expression in breast cancer, which
affects disease outcome. To accommodate for this, they searched
for changes in global modularity in protein interaction networks.
They calculated the average Pearson Correlation Coefficient (PCC)
of a hub protein and its interacting partners, and revealed many
interactions that displayed altered PCCs as a function of disease
outcome. Their analysis is based on the concept of date and party
hub (Han et al., 2004). A date (intermodular) hub shows low
correlation of coexpression with its interacting partner and acts as
a global connector in the protein interaction network, while a party
(intramodular) hub shows high correlation of coexpression and acts
as a local connector. They found that intermodular hub proteins
tend to have more partners which form altered interactions than
intramodular hub proteins.

Analyses of coexpressed subnetworks or hub proteins have
been helpful for the understanding of the metastasis of cancer
at the molecular level. However, providing interpretability to a
gene or protein network would also be valuable. For example, if
the network could provide information on what makes networks
change and what the effects of the changes are, then candidates
to be validated or methods to validate would be more specific,
and more effective targeting for therapies or drugs would be
possible. To achieve this goal, we integrated genetic interactions
and gene regulatory pathways, based on previous studies using
protein–protein interactions and gene expression profiles.

Functional dependencies revealed by genetic interactions are
known to provide abundant information regarding biological
pathways (Battle et al., 2010; Beltrao et al., 2010). Recently,
Lin et al. constructed genome-wide maps of human genetic
interactions using radiation hybrid genotyping data (Lin et al., 2010).
They suggested that their genetic interaction network approached
saturation, suggesting the network did not show a scale-free
distribution of connectivity, but was Gaussian-like. Thus, we can
expect that the addition of genetic interactions would help make
the network more global, provide functional dependencies between
genes at a genome-wide level and give more accurate and abundant
explanation to each individual pathway.

The other dataset we used for our network is gene regulation
information. Gene regulatory pathways give more detailed
explanations of cancer genes and their oncogenesis. Combinatorial
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interactions among transcription factors are critical to directing
tissue-specific gene expression (Ravasi et al., 2010). As well as
the transcription of the gene, we expect that the integration of
gene regulations, physical interactions and genetic interactions can
explain the combinatorial alterations of complexes which function
as activators or inhibitors of translocation, and protein complex
modification processes that are changed in the tumor cells.

An integrated network using various kinds of data including gene
expression profiles, protein interactions, genetic interactions and
gene regulatory pathways could provide more accurate diagnosis
than the networks constructed using a single dataset. This explains
the advantage of integration of multiple types of interactions.
We also confirmed that the classification accuracy outperformed
previously studied feature selection and classification algorithms.
We validated our network with Fisher’s exact test using the cancer-
related gene list provided by the Cancer Genome Project, and
confirmed that our network was enriched by cancer-related genes
better than gene sets from other feature selection algorithms.

We could see that many cancer-related genes are involved in
the cancer-specific gene network, and that many of those were
hubs of protein–protein interactions or genetic interactions. Many
cancer-related genes could be detected using only one type of
interaction set, which also suggests that the network is more
complete with the integration of multiple interaction types. We also
found evidences that combinations of interactions including protein–
protein interactions (PPIs), genetic interactions (GIs) and inferred
protein–protein interactions (IPPIs) might influence the modification
of a complex and the translocation of a protein, as well as the
transcription of genes. It was observed that most cancer-related
genes or cancer candidate genes play a role as a member of complex,
which influences the transcription, modification or translocation
processes, and also as an entity that is influenced by these processes.

2 METHODS
We integrated the PPI dataset, GI dataset and gene regulatory networks to
construct the initial network. We then identified the subnetworks of which
interactions showed different behavior between tumor and normal samples.
We assumed that more accurate subnetworks result in better classification
accuracy, when those subnetworks are used as a classifier. Therefore, we
obtained the optimal parameter through several cross-validations, and used
it for constructing the cancer-specific network.

2.1 Data description
To identify cancer-specific interactions, we analyzed the DNA microarray
measurements of the expression of human mRNAs. This microarray dataset
is composed of 12 600 measurements of 52 prostate cancer samples and 50
normal samples (Singh et al., 2002). We used two other microarray datasets
for independent tests (LaTulippe et al., 2002; Welsh et al., 2001). Both
datasets used 12 600 probes which is the same as Singh et al. The dataset
of Welsh et al. is composed of 24 prostate cancer samples and 9 normal
samples, and dataset of LaTulippe et al. is composed of 23 prostate cancer
samples and 3 normal samples. We converted 12 600 probes into 8828 gene
symbols by averaging the expression values of the probes that are mapped
into the same gene. Then we normalized each expression profile by z-scoring
transformation.

We used three different types of interactions. First, we downloaded
194 988 human PPIs from the I2D database on October 2010 (Brown and
Jurisica, 2007), which includes known, experimental and predicted PPIs for
human, as well as five other organisms. The proteins in those PPIs were
mapped into gene symbols using UniPROT. After removing duplicated PPIs

Table 1. Summary of collected data

Name Description Quantity Reference

PPI Protein–protein
interaction

108 544 I2D
database

GI Genetic interaction 337 235 Lin et al.,
2010

GR Directed
interaction
which activates
regulation
processes

14 015 (modification)
1822 (transcription)
320 (translocation)

Directed
interaction
which inhibits
regulation
processes

618 (modification)
493 (transcription)
24 (translocation)

Pathway
Interaction
Database

IPPI Inferred
protein–protein
interaction from
protein
complexes

17 305

Reference
Gene Set

Cancer-related
genes

16 (prostate cancer)
411 (all types of
cancer)

Cancer
Genome
Project

and PPIs that contain proteins that are not mapped into a gene symbol, we
obtained 108 544 PPIs.

Second, we downloaded 7 248 479 GIs inferred from radiation hybrid
genotypes (Lin et al., 2010). Among those, we used only 377 235 GIs of
which gene symbols can be mapped into the gene symbol list in the Entrez
Gene database.

Third, we downloaded human pathways from the Pathway Interaction
Database (Schaefer et al., 2009) on October 2010. These include 114
pathways curated by NCI-Nature, and 332 pathways imported from BioCarta
and Reactome database. Each pathway is mainly composed of protein
complex modification, transcriptions of genes or translocation of a protein or
protein complex. Modification, transcription or translocation processes can
be activated or inhibited by proteins or protein complexes. We refer these
interactions as GRs (Gene Regulations).

We assume that all the proteins in the protein complex take part in the
activation or inhibition. For example, if a protein complex with four proteins
activates transcription of a gene, then we obtain four binary activations
of transcription. If the protein complex with three proteins inhibits the
modification of the protein complex with four proteins, we can get 12 binary
inhibitions of modification. Additionally, we inferred the interactions among
proteins which constitute known protein complexes in the human pathways of
Pathway Interaction Database. We refer these inferred interactions as IPPIs.
We assumed that the protein complex would form a complete graph. For
example, we obtain six IPPIs from the protein complex with four proteins.
We extracted 14 015 activations and 681 inhibitions of modification, 1822
activations and 493 inhibitions of transcription, 320 activations and 24
inhibitions of translocation and 17 305 inferred interactions.

We also downloaded the cancer-related gene list from the Cancer Genome
Project as a reference gene set on March 2010. This included 411 cancer
genes and 16 prostate cancer genes. All data described above are summarized
in Table 1.

2.2 Construction of cancer-specific gene network
PPIs, GIs, GRs and IPPs are commonly binary interactions of genes. Among
these interactions, GRs are directional and others are non-directional.
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Identifying interactions that should be included in a cancer-specific
network from each type of interaction dataset is the key obstacle in
constructing the network. Therefore, we propose a novel scoring measure
for this purpose. The optimal threshold for the measure maximizes the
classification accuracy of the network. Accordingly, we also propose a new
prediction method which makes use of the network as a classifier.

A network with such interactions can form a wide map of gene interactions
that comprises 7261 genes. To identify a cancer-specific gene network using
this network, we took a similar approach as Taylor et al., which exploited
the difference of strengths of the interactions.

The strengths of some interactions can be different between normal and
tumor cells. The changes of interaction levels from normal to tumor state
can be causes or effects of tumorigenesis. Suppose that a protein complex is
modified during tumorigenesis, and this protein complex is responsible for
changing the strength of regulation of some proteins. Then we can say that
changes in the interaction and regulation are the causes of tumorigenesis.
The modified protein complex and altered regulations can affect various
interactions and regulations, and these changes can be regarded as a result
of tumorigenesis.

The changes in interactions can be represented as changes in degree of
dependencies between two interactors, in this case, genes. As the dependency
of two genes increases, the correlation of their mRNA expressions would
also increase. To measure the dependency between two genes, we calculate
the PCC between them. A large difference of PCC values means that there
were significant changes of correlation of two genes between two groups of
samples.

Based on the rationale mentioned previously, each interaction of the whole
network is tested to determine if the PCC of mRNA expression values of two
genes is different between normal samples and tumor samples. For a given
interaction of which two interactors are a and b, we can say that they show
significantly different correlations if the interaction satisfies the following
equation:

Score of an interaction = | PCC(vat , vbt) – PCC(van, vbn)|> threshold,

where vat and van are vectors of mRNA expression values of gene a on tumor
and normal samples, respectively, and vbt and vbn are vectors of mRNA
expression values of gene b on tumor and normal samples, respectively.

An interaction that satisfies the equation is included in the cancer-specific
network. Parameter threshold can be interpreted as minimal significance
of difference between two groups of samples. As the threshold increases,
the significance level becomes more stringent. Therefore, a smaller number
of more definite interactions and regulations are selected. In other words,
false positive and false negative rates of the cancer-specific network would
decrease and increase, respectively, as the threshold increases. We should
find the optimal threshold that yields the best result in the trade-offs between
false negative and false positive rates. To identify the optimal threshold value,
we performed leave one out cross-validation (LOOCV) while lowering the
threshold by 0.01.

When performing LOOCV, the cancer-specific gene network functions as
a classifier. Each edge of the cancer-specific network satisfies the score of
an interaction equation. For a given sample s of which the class label is
unknown, we can predict its class label using the edges of this network by
the following procedure.

(i) Assign two scores, scoret and scoren to unknown sample s and
initialize to zero.

(ii) For each edge e = (a, b) in the cancer-specific gene network:

(a) Calculate PCC(v′
at , v′

bt) and PCC(v′
an, v′

bn), where v′
at =vat +xa,

v′
bt =vbt +xb, v′

an =van + xa, v′
bn =vbn +xb, and xa and xb be s’s

two mRNA expression values of a and b, respectively.

(b) Calculate n and t where,
t =| PCC(v′

at , v′
bt) – PCC(vat , vbt)|

n = | PCC(v′
an, v′

bn) – PCC(van, vbn)|.

(c) If t ≥n, scoret = scoret + 1, else scoren = scoren + 1.

(iii) If scoret ≥ scoren, s is labeled as tumor and otherwise, s is labeled as
normal.

In the procedure above, t and n represent the changed values of PCC when
the given sample s is added to the tumor and normal sample set, respectively.
If s is normal sample, n is likely to be bigger than t. Therefore, scoren would
be also increased if proper interactions are selected as a classifier, and s is
labeled as normal if scoret < scoren.

3 RESULTS
First, we performed experiments to obtain the optimal threshold for
each type of interactions. Then we constructed a tumor-specific gene
network using optimal thresholds, and performed independent and
comparison tests. Lastly, we analyzed our network with the known
cancer-related gene list.

3.1 Obtaining optimal threshold
As stated above, we assumed that the more accurate the cancer-
specific network is, the higher classification accuracy it has. Thus,
for a more accurate cancer-specific network, we needed to obtain
an optimal threshold. We measured the accuracy, sensitivity and
specificity by LOOCV varying a threshold for each set of PPI, GI,
GR and IPPI networks (Fig. 1).

In Figure 1, we can see that sensitivity generally decreases while
specificity generally increases as the threshold increases. In other
words, a low threshold can result in high false positive rates, and a
high threshold can result in high false negative rates. We selected the
threshold value that results in the best accuracy. When numbers of
test and control cases are different, accuracy is not a good measure
for classification quality. However, in our experiment, the numbers
of tumor (=52) and normal samples (=50) are nearly identical, thus
there is no reason not to use accuracy measure.

Once we obtained the optimal threshold for each type
of interaction, we performed LOOCV again with integrated
interactions which satisfy the threshold of each type. For example,
PPIs of which score > threshold of PPI, or GIs of which score >

threshold of GI can be used for the LOOCV test. Table 2 summarizes
the results of these tests. Note that the number of interactions is
an averaged value because training sample sets are changed for
each run in LOOCV. As we can see in Table 2, we obtained
better LOOCV results when using integrated interactions than
when using individual set of interactions. The only test that shows
similar classification results is IPPIs, which are a minority among
all interaction types. Comparison with Taylor et al. and Chuang
et al. is also exhibited in Table 2. A cancer network constructed
from Chuang et al. is not a classifier. They use it as a feature
selection. We applied SMO (Platt, 1999), Naïve Bayesian (John and
Langley, 1995), k-NN (k-Nearest Neighbor, Aha and Kibler, 1991)
and Random Forest (Breiman, 2001) for a classification method.
SMO is a sequential minimal optimization algorithm for training a
Support Vector Machine (SVM). Chuang et al. show a large variance
depending on the classification algorithm.

For a more thorough test, we performed independent tests using
two datasets from Welsh et al. and LaTulippe et al. Because these
datasets were normalized by z-scoring transformation, they can be
integrated into one dataset composed of 47 tumor samples and
12 normal samples. First, we performed four independent tests
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Fig. 1. Determination of the optimal threshold. Accuracy (blue line), sensitivity (red line) and specificity (green line) measured for (a) PPI network, (b) GI
network, (c) GR network and (d) IPPI network. Points that yield the best accuracy (optimal threshold) are marked with red circles.

Table 2. Comparison of LOOCV classification accuracy for ours, Taylor et al. and Chaung et al.

Algorithm Interaction
type

Optimal
threshold
value

Number of
interactions

Number of
genes

Accuracy (%) Sensitivity (%) Specificity (%)

Ours PPI 0.56 1869.29 2548.53 82.35 (84/102) 86.54 (45/52) 78.00 (39/50)
GI 0.51 1788.37 1027.59 81.37 (83/102) 78.85 (41/52) 84.00 (42/50)
GR 0.45 793.45 935.29 78.43 (80/102) 80.77 (42/52) 76.00 (38/50)
IPPI 0.54 527.42 657.38 84.31 (86/102) 100.00 (52/52) 68.00 (34/50)
Integrated – 5033.45 2798.84 84.31 (86/102) 90.38 (47/52) 78.00 (39/50)

Taylor et al. PPI – 34106.10 5192.30 68.63 (70/102) 75.00 (39/52) 62.00 (31/50)
Chuang et al. Naïve Bayesian PPI – 4944.31 594.12 87.25 (89/102) 86.54 (45/52) 88.00 (44/50)

SMO 87.25 (89/102) 90.38 (47/52) 84.00 (42/50)
k-NN 81.37 (83/102) 88.46 (46/52) 74.00 (37/50)
Random Forest 82.35 (84/102) 82.69 (43/52) 82.00 (41/50)

with each of the four sets of cancer-specific interactions. Then, we
performed an independent test again using integrated cancer-specific
interactions. The results, shown in Table 3, suggest that using
integrated interactions improves the classification performance,
which is the same result shown in Table 2. These observations
are indirect evidence that each interaction type is complementary
to each other and they altogether result in a richer cancer-specific
gene network while minimizing the false positives. Comparison with
Taylor et al. and Chuang et al. for independent test is also exhibited
in Table 3. Our method outperforms these two methods.

Next, we performed tests to compare the classification
performance of our network with previously published classification

algorithms. When we use the cancer-specific gene network as a
classifier, it can be considered as preprocessed data by feature
selection. Therefore, we applied feature selection algorithms
including relief-F (Kira and Rendell, 1992), correlation-based filter
(Yu and Liu, 2003), information gain (Mitchell, 1997), gain ratio
(Pano, 1961) and chi-squared (Liu and Setiono, 1995) to the training
dataset and then performed an independent test using classification
algorithms including Naïve Bayesian, SMO, k-NN and Random
Forest. Those feature selection and classification algorithms were
implemented in Weka v3.5 (Witten and Frank, 2005), a publicly
available open-source software package. We selected the top ranked
2772 genes, or the same number of genes as in our classifier,
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Table 3. Comparison of classification accuracy with independent data for ours, Taylor et al. and Chaung et al.

Algorithm Interaction
type

Optimal
threshold
value

Number of
interactions

Number of
genes

Accuracy (%) Sensitivity (%) Specificity (%)

Ours PPI 0.56 1835 1671 93.22 (55/59) 91.49 (43/47) 100.00 (12/12)
GI 0.51 1776 854 88.14 (52/59) 87.23 (41/47) 91.67 (11/12)
GR 0.45 821 690 88.14 (52/59) 93.62 (44/47) 66.67 (8/12)
IPPI 0.54 524 460 89.83 (53/59) 89.36 (42/47) 91.67 (11/12)
Integrated – 4956 2772 96.61 (57/59) 97.87 (46/47) 91.67 (11/12)

Taylor et al. PPI – 35333 5316 91.53 (54/59) 95.74 (45/47) 75.00 (9/12)
Chuang et al. Naïve Bayesian PPI – 3967 606 94.92 (56/59) 93.62 (44/47) 100.00 (12/12)

SMO 94.92 (56/59) 95.74 (45/47) 100.00 (11/12)
k-NN 93.22 (55/59) 91.49 (43/47) 100.00 (12/12)
Random Forest 94.92 (56/59) 100.00 (47/47) 75.00 (9/12)

Table 4. Comparison of classification accuracy with independent data for feature selection algorithms

No feature selection Chi-squared Gain ratio Information gain Relief-F Correlation-based filter

Naïve Bayesian 96.61 (57/59)a 96.61 (57/59) 96.61 (57/59) 96.61 (57/59) 98.31 (58/59) 96.61 (57/59)
97.87 (46/47) 97.87 (46/47) 97.87 (46/47) 97.87 (46/47) 97.87 (46/47) 97.87 (46/47)
91.67 (11/12) 91.67 (11/12) 91.67 (11/12) 91.67 (11/12) 100.00 (12/12) 91.67 (11/12)

SMO 96.61 (57/59) 94.92 (56/59) 94.92 (56/59) 96.61 (57/59) 96.61 (57/59) 96.61 (57/59)
95.57 (45/47) 93.62 (44/47) 93.62 (44/47) 95.57 (45/47) 95.57 (45/47) 95.57 (45/47)

100.00 (12/12) 100.00 (12/12) 100.00 (12/12) 100.00 (12/12) 100.00 (12/12) 100.00 (12/12)

k-NN 76.27 (45/59) 88.14 (52/59) 88.14 (52/59) 88.14 (52/59) 89.83 (53/59) 88.14 (52/59)
70.21 (33/47) 85.11 (40/47) 85.11 (40/47) 85.11 (40/47) 89.36 (42/47) 85.11 (40/47)

100.00 (12/12) 100.00 (12/12) 100.00 (12/12) 100.00 (12/12) 91.67 (11/12) 100.00 (12/12)

Random Forest 83.05 (49/59) 84.75 (50/59) 91.53 (54/59) 91.53 (54/59) 93.22 (55/59) 94.92 (56/59)
100.00 (47/47) 100.00 (47/47) 100.00 (47/47) 95.74 (45/47) 97.87 (46/47) 97.87 (46/47)
16.67 (2/12) 25.00 (3/12) 58.33 (7/12) 75.00 (9/12) 75.00 (9/12) 83.33 (10/12)

aValues are given in % (n/N). First, second and third rows of each cell represent accuracy, sensitivity and specificity, respectively.

after each gene is ranked by each feature selection algorithm. The
results are shown in Table 4. Naïve Bayesian and SMO show
similar classification accuracy with our method. However, these two
methods do not seem to gain from feature selection algorithms.
Random Forest and k-NN definitely gain from feature selection
algorithms, but they generally show a lower accuracy than our
solution.

3.2 Analysis of cancer-specific gene network
Table 5 shows the summary information for the cancer-specific
gene network, which is used for analysis throughout the rest of
the article. To determine if genes in the pathway were previously
published in the cancer-related studies, we searched GeneRIF
database by keyword. The keywords used were as following:
tumo(u)r, cancer, onco(gene), carcino(genesis), neopla(sm),
adenocarcino(ma), leukem(ogenesis), astrocytoma, glio(ma),
meningioma, thymoma, lymphoma, myeloma, ameloblastoma and
hamartoma, in a case-insensitive manner.

We found 118 among 283 cancer-related genes in the protein
interaction network, and found 156 among 286 cancer-related genes
in the integrated network. This again shows that each type of
interactions is complementary, as we have seen in Tables 2 and 3.

Table 5. Summary of the cancer-specific gene network

Number of genes 2772 total genes (Supplementary Table S1)
1653 genes without cancerrelated references in

GeneRIF
963 genes with cancerrelated references in

GeneRIF
156 cancer-related genes
3 prostate cancer-related genes

Number of interactions 4956 total interactions
1835 PPIs
1776 GIs
821GRs
524 IPPIs

We can see that the P-value of the integrated network is very
low. In contrast, GI and IPPI networks show very high P-values.
This is likely due to the fact that the cancer genes in those
networks are relatively unknown cancer-related genes. Because
we have confirmed that other networks also have discriminative
power (Tables 2 and 3), it is less likely that a protein interaction
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Table 6. Significance level of selection power of our cancer-specific gene network

Algorithm Interaction
type

Number of
genes in whole
networka

Number of cancer-related
genes in whole network

Number of genes in
cancer-specific
networkb

Number of cancer-related
genes in cancer-specific
network

P-value

Ours PPI 6703 283 1671 118 2.811e-06
GI 1246 21 854 11 0.1139
GR 1969 157 690 73 0.01016
IPPI 1751 138 460 40 0.06499
Integrated 7126 286 2772 156 0.0002012

Chi-squared – 125 0.02500
Gain ratio – 123 0.02913
Information gain – 119 0.03704
Relief-F – 116 0.04180
Correlation-based filter – 123 0.02913

aNumber of total genes in a network made with whole interactions of each type.
bNumber of total genes in a network made with only cancer-specific interactions of each type.

Table 7. Over and under-expressed genes using two sample t-test (α = 0.01)

Overexpressed genes Underexpressed genes

FAM107A, NELL2, CALM1,
ANXA2, DPYSL2, PTGDS,
RCAN2, CDC42BPA, MAL,
JAK1, KANK1, DIP2C, CETN2,
CCND2

XBP1, RPS2, P4HB, RPLP0,
CLDN3, TSPAN1, NME2, FASN,
RPL13, EEF2, RPL13A, GUCY1A3,
RPL12, RPS10, WWC1, EEF1G,
RPL29, RPS18, RPSA, RPL14,
TNFSF10, RPS8, RPS17, RPS28,
RPL8, RPS4Y1

network only is more significant in describing the cancer-specific
gene network, and we can expect that genes that were selected from
other networks are also significant.

Table 6 also shows the P-values using other feature selection
algorithms. For each selection algorithm, we selected 2772 top
ranked genes and counted the known cancer-related genes among
2772 genes. We can confirm that the selective power of our
interaction based method is definitely higher than other gene-based
feature selection algorithms.

Among 2772 genes (156 known cancer-related genes) in our
cancer-specific network, we selected 517 genes of which degree
is �5 as hub genes. Among 517 hub genes, there were 39 cancer-
related genes (7 prostate cancer-related genes), thus 25% (=39/156)
of cancer-related genes were hub genes. There were 2616 genes
which are not known as cancer-related genes based on Caner
Genome Project, and 478 genes among them are hubs, thus 18.27%
(=478/2616) of them were hub genes. Thus, cancer-related genes
had higher rate to be a hub gene than non-cancer-related genes.

Table 7 lists 14 overexpressed genes and 26 underexpressed
genes in tumor samples from two sample t-test. We used
α = 0.01 as the genome-wide significance level, and applied the
Bonferroni adjustment to deal with multiple comparisons. The
detailed information for each informative gene is available in the
Supplementary Table S4. We used MeV software (Saeed et al., 2006)
to detect over- and underexpressed genes.

Fig. 2. Functional analysis on prostate cancer gene subnetworks. The length
of the bar denotes the frequency of clusters indicating major biological
processes and molecular functions. More frequent functions comprise larger
part of our cancer-specific network.

4 DISCUSSIONS
To analyze the cancer-specific gene network, we firstly clustered
it into modules using network clustering algorithm (Ahn et al.,
2010), which hierarchically detect the modules in the network while
allowing overlapping nodes (genes) between modules. Then we
enriched these modules with Gene Ontology (GO) database using
FuncAssociate (Berriz et al., 2003). We have found 312 clusters
which has more than 3 genes. Among 312 clusters, 86 clusters were
enriched with P<0.01. Major biological processes and molecular
functions of those 86 clusters are summarized in Figure 2. Figure 2
includes well-known processes which have been implicated in
oncogenesis, and seems to cover global map of biological processes
and cellular functions. Detailed enrichment results and genes of each
cluster are provided in Supplementary Table S2.

To see more details of some cancer-specific subnetworks, we
visualized the cluster 76, 128, 167, 200 and 430 of Supplementary
Table S2, in Figure 3. Visualization was done using the Cytoscape
(Shannon et al., 2003).
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Fig. 3. Visualization of prostate cancer-specific gene subnetworks of Supplementary Table S2. (a) Negative regulation of apoptosis (cluster 128); (b) positive
regulation of apoptosis (cluster 167); (c) cell cycle (cluster 430); (d) cell cycle (cluster 200); (e) immune system process (cluster 76); (f ) legend for subnetworks.

We can confirm that activation or deactivation of interactions
in tumor state explains well-known processes which are related
to oncogenesis. Many edges of Figure 3a (negative regulation of
apoptosis) are observed in tumor state only, which means apoptosis
are negatively regulated in tumor state. On the contrary to this,
almost all the edges of Figure 3b (positive regulation of apoptosis)
are observed in normal state only. This means apoptosis process
does not function normally in tumor state. Similarly, most edges of

Figure 3e (immune system process) can be observed in normal state
only. This explains there can be defects in immune system in tumor
cells. Many edges of subnetworks for cell cycle (Fig. 3c and d) are
activated in tumor state only, which shows changes of cell cycle
process in network level.

Using these subnetworks, we can predict more detailed roles
of each gene. For example, hub gene CD3D in Figure 3e, which
is known to be involved in T-cell development, seems to form a
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complex with many genes including cancer-related genes (IKZF1,
TRA@) and activate modification of complexes in which cancer-
related genes (IL2, PTPN11 and CBL) are involved. E2F1 in
Figure 3c can be an evidence to support the fact that combinatorial
interactions among proteins direct the gene expression level (Ravasi
et al., 2010). E2F1 has many interactions including PPI, GI and
IPPIs, and the combinations of those interactions may influence the
transcription of POLD1, TK1, MCL1, etc. It is also interesting that
many cancer-related genes are observed to be involved in multiple
cancer-specific subnetworks, and many play important roles. For
example, RB1 in Figure 3d is a hub of PPIs.

We identified a large number of genes that are not mentioned in
any cancer-related publications, but are shown to play a crucial role.
Those include TLE1 in Figure 3a, PTGDR in Figure 3c and CD3D
in Fig ure 3e. These could be strong candidate genes for further
biological investigation. In addition to the genes listed above, there
are many more such candidates in our cancer-specific network with
their predicted roles.

Throughout the cancer-specific subnetworks, GIs, PPIs, GRs and
IPPIs are shown to be slightly overlapped. Moreover, we observed
a large number of cancer-related genes which can be detected
using only one type of those interactions, and those genes must be
complementary to each other. Therefore, we conclude that a network
with integrated interaction is better at finding cancer-related genes
than a network with only one type of interaction.

Beside the subnetworks discussed above, we provide
subnetwork files in SIF format for visualization in Cytoscape
at http://embio.yonsei.ac.kr/∼Ahn/tc.php.

5 CONCLUSIONS
In this study, we proposed a novel cancer-specific network
construction method and showed that the cancer-specific gene
network contains many cancer-related genes. The selective power
of our method was better than previously studied feature selection
algorithms. We also proposed that the classification method
can make use of our network. When constructing the network,
integration of PPI, GI, GR and IPPI increased the classification
accuracy. This means more complete and complementary network
can be achieved by various datasets, rather than using only PPIs.

By analyzing the cancer-specific gene network, we confirmed
that cancer-related genes played an important role in the network,
and could suggest more detailed and interpretable roles of cancer-
related genes and cancer candidate genes in the prostate cancer cells.
These roles include activator/inhibitor (or activated/inhibited genes)
of transcription, translocation and protein complex modification
processes, as well as the membership of protein complexes that are
in charge of or result in cancer-specific transcriptional regulation.
We expect that more significant and interesting observations are
possible.

ACKNOWLEDGEMENTS
The data were obtained from the Wellcome Trust Sanger Institute
Cancer Genome Project web site http://www.sanger.ac.uk/genetics/
CGP.

Funding: This research was supported by Basic Science Research
Program through the National Research Foundation of Korea (NRF)
funded by the Ministry of Education, Science and Technology (2011-
0005154).

Conflict of Interest: none declared.

REFERENCES
Aha,D. and Kibler,D. (1991) Instance-based learning algorithms. Mach. Learn., 6,

37–66.
Ahn,Y. et al. (2010) Link communities reveal multiscale complexity in networks.

Nature, 466, 761–765.
Battle,A. et al. (2010) Automated identification of pathways from quantitative genetic

interaction data. Mol. Syst. Biol., 6, 379.
Beltrao,P. et al. (2010) Quantitative genetic interactions reveal biological modularity.

Cell, 141, 739–745.
Berriz,G.F. et al. (2003) Characterizing gene sets with FuncAssociate. Bioinformatics,

19, 2502–2504.
Breiman,L. (2001) Random Forests. Mach. Learn., 45, 5–32.
Brown,K.R. and Jurisica,I. (2007) Unequal evolutionary conservation of human protein

interactions in interologous networks. Genome Biol., 8, R95.
Chuang,H. et al. (2007) Network-based classification of breast cancer metastasis.

Mol. Syst. Biol., 3, 140.
Han,J.D. et al. (2004) Evidence for dynamically organized modularity in the yeast

proteinprotein interaction network. Nature, 430, 88–93.
John,G.H. and Langley,P. (1995) Estimating continuous distributions in Bayesian

classifiers. In Proceedings of 11th Conference on Uncertainty in Artificial
Intelligence, Morgan Kaufmann Publishers Inc., San Francisco, CA, USA, pp.
338–345.

Kira,K. and Rendell,L.L. (1992) A practical approach to feature selection. In
Proceedings of 9th International Workshop on Machine learning, Morgan
Kaufmann Publishers Inc., San Francisco, CA, USA, pp. 249–256.

LaTulippe,E. et al. (2002) Comprehensive gene expression analysis of prostate cancer
reveals distinct transcriptional programs associated with metastatic disease. Cancer
Res., 61, 4499–4506.

Lin,A. et al. (2010) A genome-wide map of human genetic interactions inferred from
radiation hybrid genotypes. Genome Res., 20, 1122–1132.

Liu,H. and Setiono,R. (1995) Chi2: feature selection and discretization of numeric
attributes. In Proceedings of IEEE 7th International Conference on Tools with
Artificial Intelligence, IEEE Computer Society, Los Alamitos, CA, USA, pp.
338–391.

Mitchell,T. (1997) Machine Learning. McGraw-Hill, New York.
Pano,R. (1961) Transmission of Information. MIT Press, Cambridge, MA.
Platt,J.C. (1999) Fast training of support vector machines using sequential minimal

optimization. In Schölkopf,B. et al. (eds) Advances in Kernel Methods: Support
Vector Learning. MIT Press, Cambridge, MA.

Ravasi,T. et al. (2010) An atlas of combinatorial transcriptional regulation in mouse
and man. Cell, 140, 744–752.

Saeed,A.I. et al. (2006) TM4 microarray software suite. Methods Enzymol., 411, 134–
193.

Schaefer,C.F. et al. (2009) PID: the Pathway Interaction Database. Nucleic Acids Res.,
37, D674–D679.

Shannon,P. et al. (2003) Cytoscape: a software environment for integrated models of
biomolecular interaction networks. Genome Res., 13, 2498–2504.

Singh,D. et al. (2002) Gene expression correlates of clinical prostate cancer behavior.
Cancer Cell, 1, 203–209.

Taylor,I.W. et al. (2009) Dynamic modularity in protein interaction networks predicts
breast cancer outcome. Nat. Biotechnol., 27, 199–204.

The International Cancer Genome Consortium. (2010) International network of cancer
genome projects. Nature, 464, 993–998.

Welsh,J.B. et al. (2001) Analysis of gene expression identifies candidate markers and
pharmacological targets in prostate cancer. Cancer Res., 61, 5974–5978.

Witten, I.H. and Frank, E. (2005) Data Mining: Practical Machine Learning Tools and
Techniques, 2nd edn. Morgan Kaufmann, San Francisco.

Yu,L. and Liu,H. (2003) Feature selection for high-dimensional data: a fast correlation-
based filter solution. In Proceedings of 12th International Conference on Machine
Learning, Springer, Berlin, Heidelberg, pp. 856–863.

1853

 at Y
onsei U

niversity on S
eptem

ber 15, 2011
bioinform

atics.oxfordjournals.org
D

ow
nloaded from

 

http://bioinformatics.oxfordjournals.org/

