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Abstract

Semantic caches, originally proposed for client-server
database systems, are being recently deployed to acceler-
ate the serving of dynamic web content by transparently
caching data on edge servers. Such caches require fast
query containment tests to determine if a new query is con-
tained in the results of cached queries. Query contain-
ment checking algorithms have been studied in the context
of query optimization and materialized view selection, but
their scalability remains a serious limitation. We argue that
application queries are usually instantiations of a smaller
number of base templates and show how this can be ex-
ploited to scale up containment checking. Our contributions
include (i) algorithms to detect similarity between query
predicates; (ii) efficient algorithms for proving containment
among similar query predicates; (iii) a technique to dynam-
ically aggregate similar queries in the cache to support ef-
ficient search; and (iv) integration of these schemes into a
two-level containment checker. We describe our approach,
report on its implementation in a dynamic web data cache,
and show that it can reduce query containment cost by an
order of magnitude for web workloads.

1 Introduction

Dynamic caching of structured data across distributed
servers such as application servers and edge servers is a
growing need of several web applications [3]. Besides
e-commerce, dynamic data caching is also applicable to
data integration systems, client-server databases [5, 12],
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and other emerging applications such as peer-to-peer data
stores [7]. Techniques for data caching range from full or
partial-table replication to exact-string-match based query
response caches. Semantic caches, where the cached data
is described by the set of query predicates, offer a dynamic
and low administrative overhead solution to data caching.
The concept of a semantic cache (also called predicate
cache) had been proposed for client-server database sys-
tems [5, 12]. Recently, it has received renewed interest in
the context of web-based dynamic data caching [15, 1, 2].
Several recent proposals have also suggested applying se-
mantic caching to XML stores [4, 10].

In a dynamic semantic cache the data is populated on-
the-fly (e.g., on a query miss) based on the application’s
query stream. The contents of the cache are described by
the set of queries whose results have been inserted. A new
query is considered to hit in the cache if it is logically con-
tained in the previously cached queries. This containment
check requires column (attribute) coverage, i.e., the neces-
sary columns have been fetched by a previous query (or
a union of queries), and that the new query’s predicate is
more restrictive than the predicates of the cached data. So-
phisticated query containment algorithms have been pro-
posed and studied in the literature [17, 13]. However, scal-
ability of these techniques to a large set of cached queries
and predicate terms is an issue. Our performance experi-
ments with a dynamic data cache for web applications have
shown that the cost of containment checking can become
significant [2, 1]. The problem of query containment and
equivalence has also been studied in the more generic prob-
lem setting of query rewriting and materialized view selec-
tion [14, 19, 16, 9]. However, these techniques are not di-
rectly applicable to the dynamic caching problem consid-
ered in this paper.

The scalability challenge of query containment check-
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ing arises from the use of general algorithms designed for
complex arbitrary predicates. Additionally, the checking
becomes expensive as it needs to linearly scan through all
the candidate cached queries. We observe that most appli-
cations (e.g., web-based forms or Java programs using pre-
pared statements) issue template-based queries, whose se-
lection predicates share the same structure across queries
and differ only in a few numeric or string constants. In
this paper we propose techniques to exploit these template-
based queries in order to improve the performance and scal-
ability of containment checking by dynamically aggregat-
ing similar queries in the cache, devising specialized algo-
rithms and indexes to search them, and testing containment
by checking a new query against the aggregation of similar
previously cached queries.

Luo and Naughton proposed a form based proxy caching
approach [15]. In their scheme, templates were specifically
designed for conjunctive keyword based predicate terms
such as Oracle AND Java. They also require that the web
application designer must explicitly provide the template
definitions to the proxy cache. In our work, templates can
consist of arbitrary simple and complex predicates on sev-
eral attributes based on numeric or string parameters, e.g.,
A=5AND B = ‘JAVA’ OR C="ORACLE’. Also, we propose
mechanisms to merge and aggregate a large number of sim-
ilar query predicates in the cache efficiently. Furthermore,
we propose schemes to infer templates from prepared state-
ments or SQL strings by intercepting the JDBC calls at the
proxy-cache layer.

Assuming M cached queries, n conjuncts in a query, and
m terms in a conjunct, the worst-case complexity of a tradi-
tional query containment algorithm is O(M x m? x n?). Our
template-based approach significantly reduces this com-
plexity to O(MAX{(K xm x n), (nxIg[¥%])}), where K
is the number of templates. In practice, K is usually much
smaller than M and likely to result in significant improve-
ment in query containment performance. Our experiments
validate this intuition by showing a 60% improvement in the
response times of queries (both hits and misses).

1.1 Contributions

In this paper we focus on algorithms and data structures
for efficient query matching which include:
Template-based query containment algorithms: While
containment checking can be an expensive operation across
arbitrary predicates, very efficient specialized algorithms
can be devised to check containment for queries with simi-
lar selection predicates. We confirm this intuition with two
theorems and show how they can be applied to the query
containment problem for similar queries.

MAP data structure for dynamic query aggregation: We
propose to aggregate values ranges of similar queries in-

serted in the cache dynamically using data structures, which
we call Merged Aggregate Predicates (MAPs). The query
containment problem is converted into a search of one or a
limited number of MAPs. We discuss how MAPs are main-
tained as queries are inserted and removed from the cache
and how they can be indexed for a quick search.

Template detection: When a query is received, it may not
be declared by the application as an instantiation of an ex-
plicit parameterized template. We propose algorithms for
detecting similarity between a newly received query and
cached queries. We describe how an index of MAPs can
be used to speed up this similarity detection step.
Integration in a dynamic edge data cache: We implement
these concepts in a dynamic edge database cache for web
applications, called DBProxy. We evaluate the performance
of our query containment techniques in DBProxy and com-
pare them to traditional approaches using two representative
web e-commerce benchmarks. We show that our scheme
can reduce the cost of containment checking by more than
an order of magnitude compared to a general containment
checking approach.

The remainder of this paper is organized as follows. We
discuss preliminaries, including traditional query match-
ing algorithms and application query programming styles
in Section 2. We present an overview of our overall ap-
proach in Section 3. In Section 4, we describe the merged
aggregate predicate (MAP) data structures and their usage
and maintenance aspects. We discuss our approach to iden-
tifying templates using similarity detection between queries
in Section 5. We evaluate the proposed algorithms in Sec-
tion 6, discuss related work in Section 7 and summarize the
paper in Section 8.

2 Preliminaries

We evaluated our template-based query matching tech-
niques by implementing them in DBProxy, a dynamic edge
data cache for web applications [1]. DBProxy maintains a
large number of semantically consistent materialized views
of previous query results in a local database. The content
of the edge cache is described by a cache index containing
the list of queries, their search predicates and the remaining
clauses. When a new query is received, the list of queries
that operated on the same table, table list or join condition
is retrieved. A query containment checker is invoked to ver-
ify whether the result set of this new query is contained in
the union of the results of the previously cached candidate
queries.

Next, we describe a general query containment check-
ing algorithm described in the literature, and employed in
the initial implementation of the DBProxy edge cache. Fur-
thermore, we report on its overhead and scalability under
web workloads.
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CUSTOMER ORDERS ORDER_LINE ITEM
c_ID o_ID OL_ID I_ID
C_UNAME —I—' o_C_ID —|—> OL_O_ID I_TITLE
C_PASSWD O_DATE OL_I_ID I_A_ID
C_FNAME O_SUB_TOTAL OL_QTY I_PUB_DATE
C_LNAME O_TAX OL_DISCOUNT I_PUBLISHER
C_ADDR_ID O_TOTAL OL_COMMENT I_SUBJECT
C_PHONE O_SHIP_TYPE I_DESC
C_EMAIL O_SHIP_DATE I_RELATED[1-5]
C_SINCE O_BILL_ADDR_ID I_THUMBNATL
C_LAST_VISIT O_SHIP_ADDR_ID I_IMAGE
C_LOGIN 0_STATUS AUTHOR I_SRP
C_EXPIRATION I_COST
C_DISCOUNT A_ID I_AVAIL
C_BALANCE A_FNAME I_STOCK
C_YTD_PMT A_LNAME I_ISBN
C_BIRTHDATE A_MNAME I_PAGE
C_DATA A_DOB I_BACKING
A_BIO I_DIMENSION

Figure 1. Simplified database schema of an on-line book-
store used by TPC-W. Customers can issue search queries
and order books.

2.1 General query containment checking

Consider a cached query, O, and a newly received
query, Q. Formally, the results of query Q> are contained
in the results of query Q if three conditions [13] are satis-
fied:

Attribute coverage: This requires the columns in the select
list of Q> to be a subset of the select list of Q.

Tuple coverage: This means that for all instances d of the
database, a tuple that belongs to the result set of 0> must
also belong to the result set of Q. Alternatively, this means
that for all possible values of a tuple ¢, the WHERE predi-
cate of O, implies that of Q1. Denoting by P; and P, the
WHERE predicates of Q1 and O, respectively, the tuple
coverage requirement can be expressed as:

V() : P(t) = Pi(t)

This is true if and only if the expression, P, A =P, is unsat-
isfiable.

Selectability: This requires that the new query can be eval-
uated on the local cache. That is, any columns mentioned in
the WHERE or any additional clauses of O, must be in the
select list of Q.

Tuple coverage checking algorithm. By far, the most ex-
pensive condition to check is tuple coverage. DBroxy uses
a tuple coverage checking algorithm based on the ones re-
ported in [17, 13], which we extend to handle predicates
over columns with continuous ranges (not just integers).
The algorithm in general proceeds by converting the prod-
uct expression P, A —P; into an AND-OR normal form, ex-
pressing it as the OR of one or more conjuncts:

P, A—Py where:

G

CiVG...VC,
AL N

The leaf predicates (¢;’s) are atomic predicates comparing
columns, or a column and a constant (string, numeric, or

Breakdown of HIT cost (msec)
Database Containment Local
Size Checking Execution
TPCW-10K 57.88 16.37
TPCW-100K 77.32 19.60

Table 1. Containment checking overhead. The table
shows the breakdown of hit cost in a query cache supporting
dynamic data caching in a web edge server. The numbers
are reported from an execution of the TPC-W benchmark
against a 10K and 100K item database. The workload con-
sisted of 8 emulated browsers, running for an hour on a 400
Mhz Pentium II with 128 MB of memory.

set value), such as “col op constant” or “col op col”,
where op = {<,>,=,IN,LIKE,...}. Note that the product
expression P, A Py is unsatisfiable only if all the conjuncts
are unsatisfiable. The algorithm tests each conjunct for sat-
isfiability, one at at time, terminating if any one is found
satisfiable. If all are unsatisfiable, then P> A —P; is also un-
satisfiable and containment is ensured. The main compo-
nent of the algorithm is the one verifying the satisfiability
of conjunct expressions of atomic predicates (the C;’s).

The algorithm proceeds in two steps. First, it adjusts the
valid ranges for the columns based on predicates that com-
pare a column with a constant value. Then, it processes
atomic predicates that compare columns with each other
(e.g. “cost < msrp”) to verify whether given the current
valid ranges for each column and the comparison constraint,
there is a plausible set of values for all the columns men-
tioned in C;. If any column has an empty set of plausible
values, the conjunct is judged unsatisfiable. The algorithm
has O(n?) worst-case complexity where n is the number of
columns that appear in the conjunct C; and is described in
more detail in [13].

2.2 Scalability of general containment checking

Note that the cost of the containment checking grows
with the number of conjuncts in the product expression
(P, A —Py). Furthermore, the total cost of cache contain-
ment checking grows with the number of cached queries,
since a new query must be checked against all the plausi-
ble candidate queries in the cache. Consider an application
that submits the following two successive query predicates,
changing the bounds on the msrp and num reviews column:

Py
P

(cost < 15 Amsrp < 8)V (num_reviews > 5) V (avail > 20)
(cost < 15 Amsrp <4)V (num_reviews > 8) V (avail > 20)

The general containment checking algorithm produces the
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containment checking time (msec)

500 600 700 800 900 1000
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Figure 2. The cost of containment checking as the num-
ber of cached queries increases under the TPC-W bench-
mark. Cost is measured as the time taken on a Pentium
II 400 Mhz machine by a Java implementation of the gen-
eral containment algorithm to test for containment of a new
query in the cache (in case of a miss).

following product expression for P A —P;:

(cost < 15 Amsrp < 4 Acost > 15 Anum_reviews < 5 Aavail < 20)
V (cost <15 ANmsrp <4 Amsrp > 8 Anum_reviews < 5 A avail < 20)
V (num_reviews > 8 A\ cost > 15 Anum_reviews < 5 A avail < 20)

V (num_reviews > 8 Amsrp > 8 Anum_reviews < 5 A avail < 20)
V (avail > 20 A cost > 15 Anum_reviews < 5 Aavail < 20)
V (avail > 20 Amsrp > 8 Anum_reviews < 5 A avail < 20)

After which it considers each conjunct (each line in the
above expression) in turn, and computes the valid range for
each column (cost, msrp, and avail) to discover that in each
case the valid range is empty, declaring each conjunct un-
satisfiable and, thereby, the entire expression to be unsatis-
fiable. In general, some constraints may compare columns
against each other. This requires transitive updates of the
valid ranges for a dependent column based on its related
columns.

Table 1 shows the proportion of time devoted to contain-
ment checking in case of a cache hit in our DBProxy edge
cache. The table reports costs for the TPC-W benchmark
for a 10K and 100K item database. As shown in Figure 2,
the cost of containment checking (in case of a miss) for a
query can grow to tens or hundreds of milliseconds even
for a limited size cache (100-200 queries). Furthermore,
it does not scale well as the number of cached queries in-
creases. Note that in the above example, if we recognized
that the only values that changed between P and P, are the
upper-bound of msrp and the lower bound of num reviews,
we would more easily deduce that P, = Pj.

3 Template-based query containment

Queries submitted by applications often follow a tem-
plate style. For instance, in Java-based web applications,

two query programming styles can be seen: i) explicitly de-
clared templates where queries are pre-declared as prepared
statements and where parameters are set through explicit
calls, or ii) undeclared templates where queries are com-
posed by the string concatenation of a fixed part and a vari-
able part. Such templates are often seen in the servlet pro-
grams running at the Web server which process the inputs
from the front-end interface consisting of web-page forms.
If the template is not explicitly declared, our caching driver
has to infer implicitly that some submitted queries follow
the same template.

Notation. Before we get into the details of our approach,
we define a few notational conventions to simplify the rest
of the discussion. We denote a generic predicate expression
(interchangeably called a predicate) by P;. When a predi-
cate is expressed in its AND-OR normal form, we denote
by C; the i"" conjunct in that expression. Each conjunct
contains several predicate terms ANDed together, with the
predicate terms denoted as f;. These predicate terms are
atomic conditions, such as equality or inequality predicates
over columns. When multiple conjuncts appear in the ex-
pression, the terms are denoted by a double subscript, with
the j term in C; denoted as #; j- When referring to a group
of similar query predicates such as the instantiations of a
particular template, we refer to the part of the predicate that
changes across the group as the variant predicate. Simi-
larly, when considering a single conjunct in the predicate,
we refer to the changing part as the variant conjunct. In
the example shown below, P; and P, are the predicate ex-
pressions, while (cost < 15 A msrp < 8) is one of the
conjuncts, and within it (cost < 15) is a predicate term. Fur-
thermore, within the conjunct (cost < 15 Amsrp < ?), the
variant conjunct consists of a single predicate term, namely
(msrp < 7).

Templates. Consider the two predicate expressions de-
scribed in Section 2:

1 = (cost <15 Amsrp < 8)V (num_reviews > 5)V (avail > 20)

P
P (cost <15 Amsrp <4)V (num_reviews > 8) V (avail > 20)

2
A comparison of these two predicate expressions suggests
that they are likely two instantiations of a template P; of the
form:
P = (cost <15Amsrp < )V (num-reviews > ?)V (avail > 20)
The main intuition behind our approach is that once the
common terms are removed, the variant predicate is much
smaller and faster to test for containment. In particular, the
aggregated values of the variant predicates can be indexed
as data for fast containment testing. In this section, we
present two basic theorems that support the intuition that
proving containment across the variant predicates is suffi-
cient to ensure containment across the entire predicate ex-
pressions.
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3.1 Variant Predicate: Basic theorems

First, we consider two conjuncts, which differ in some pred-
icate terms while agreeing in the remaining predicate terms.
The following theorem holds.

Theorem 1 Consider two conjuncts, C; and Cj:
Ci = HAb. . A{ENAtyr... Nty

{(5 = AL AG Al Ny

Suppose that only the first k predicate terms of C1 and C;

differ. Let d denote an instance of the database on which

the predicates are defined. The following result holds:

if V(t€d) Nep.mti=Nep. .yt then V(te

d) Cz(l) :>C1(t)

Recall that Vr :  C(t) = Ci(t), written also as C; = Cj,
means that for any tuple ¢ in the database d, if + matches
C, then it also matches Cy. Or equivalently, the result set
of C; is a subset of that of C;. The theorem states that it is
sufficient to show logical implication across the variant part
of the conjunct (1] Aty... Aty = 1] Afr... \f) to guarantee
that C» = C1, essentially ignoring the constant part across
C 1 and Cz.

Theorem 2 Consider two predicate expressions, P; and
P>, represented in their AND-OR normal form, consist-
ing of n terms. Suppose that Py and P, differ in the first
k conjuncts and agree in the remaining n — k conjuncts:

P = O VG...VCGVCiy.. VG
P, = CVC..VCVCi1...VGy
The following holds:

lfCl/ =G V,’ € {1,..k} then P, = Py.

Example: Consider the two queries in the example of Sec-
tion 2.2. In this case, the last conjunct consisting of the
predicate term (avail > 20) is the common part across ex-
pressions, while the first conjunct (cost < 15 Amsrp <?)
and the second conjunct consisting of one predicate term
num_reviews >7 differ across instantiations. By Theorem
2, it suffices to show implication among the variant predi-
cate sub-expressions to establish implication across the en-
tire conjunct. That is, it suffices to show the following:

(cost <15Amsrp <4) =
(num_reviews > 8) =

(cost < 15 Amsrp < 8)
(num_reviews > 5)

to conclude that P, = P;. I
3.2 Containment checking via variant predicates
Our approach requires that all predicate expressions are

converted to their AND-OR normal forms. All NOT op-
erators are removed from the predicates. This is achieved

by applying DeMorgan’s Law (=(P; A P) = —P; V =P, and
—=(P;V Py) = =Pj A —~Py). The NOT operators that propa-
gate down to the leaf terms (#;’s) are removed after reversing
the conditions inside the leaf predicate terms. For example,
“=(cost < 5)” becomes “cost > 57, and “—(cost = 10)” be-
comes “(cost < 10V cost > 10)”. Finally, a predicate, P,
is expressed in its AND-OR normal form as follows (where
the terms #; are predicate terms such as “col op col” or
“col op constant”, etc.):

P= C/VG..V(C,
Ci= tHAb..Nty

where each conjunct is of the form:

Eliminating common disjuncts: Suppose that P; is a
parametrized query predicate template. Consider two suc-
cessive instantiations of P, namely P; and P, respectively.
When expressed in their AND-OR normal form, P; and P,
can be expressed as follows:

Py
Py

CiVGC...NVCVCiy1 VC,
CiVC,..VCVCiy1 VG,

In the above expressions, the conjuncts Cy through C, are
common across instantiations, while the first k£ conjuncts
may differ. By Theorem 2, the query containment checker
can simply focus on the first k conjuncts. In particular, the
goal of testing that P, is contained in Py, is transformed into
one of establishing implication among the first k conjuncts
of P; and P,. Precisely, it has to show that:

C = G Vieq.x

Conjunctive expression containment: Since the Cls are
conjuncts, the problem of testing containment reduces to
that of testing containment across similar conjuncts. A con-
junct (C; above) is an AND of one or more predicate terms
tij, such as ‘col op constant’. For simplicity, we have
grouped all the common predicate terms in the conjunct to-
gether and called it ¢ and similarly we have grouped all the
differing terms. Separating out the common and differing
parts of C/ and C; we have:

C!
Ci

e
HAc

Theorem 1 can be used to simplify this task by ignoring the
common part (c¢) of the conjunct and focusing on the variant
part, where it is sufficient to show that: t{ = 1.

Conjunctive expression containment across multiple
similar queries: So far we discussed pair-wise matching
of two similar queries. We can further match against mul-
tiple cached queries belonging to the same template. Con-
sider a new query with conjunct Cy. We are interested in
testing its containment in m previous queries where each
is an instantiation of the same conjunct, denoted by C;
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through C,,. Expanding each conjunct in the above expres-
sion into its different and common predicate terms respec-
tively, (C; = t; A\ ¢), we reduce the containment test across
the m queries to establishing the following sufficient condi-
tion:

fhAc = (t1Vh...Vi)Ac

By Theorem 1, ignoring the common part, it is sufficient to
show that:

fh = (ll\/lz...\/l‘m)

For example, let’s consider a simple conjunct, one with
a single term, such as #g : msrp < 20. The containment
test of 7y against 3 previously cached instantiations, say
t cmsrp < 30, tr :msrp <45, t3 :msrp < 25, can be
handled by maintaining the maximum value of all previ-
ously cached predicate terms and comparing against it, i.e.,
to match against msrp < 45. Essentially, our approach is
to merge previous individual predicate term instantiations
into a merged aggregate predicate (MAP) to simplify con-
tainment checking. In Section 4, we describe in detail how
MAPs are created and stored for each type of variant con-
Jjunct.

3.3 Opverall containment checking algorithm

When a new query Q, is received, we check if it is an in-
stantiation of an explicit query template (i.e., a JDBC Pre-
paredStatement). If it is not an instance of a PreparedState-
ment, then we examine the query to see if it is similar to pre-
viously received queries. Specifically, a template-matcher
compares the structure of the query to previous ones in an
attempt to infer if it follows an undeclared (implicit) query
template.

If the new query, Q,, is found to be an instantiation of an
explicit or implicit query template, a MAP-checker checks
if Q, is contained in the MAPs associated with the tem-
plate. In case of a miss, and if Q, is inserted in the cache,
the MAPs aggregating the predicates of cached queries are
updated to include the selection predicate of the new query.
If template-based checking fails to prove containment, the
general containment checker can be invoked to test for con-
tainment against cached queries that are not similar to the
new query. Specifically, the general checker tests the new
query for containment in the list of cached queries that op-
erated on the same table(s), and which satisfy the attribute
coverage and selectability conditions.

3.4 Complexity Analysis

To compare the general containment checking algorithm
described in Section 2 with our template-based checking al-
gorithm, consider a semantic cache containing M queries.
To simplify the analysis, assume that the conversion of each

query to its AND-OR normal form generates n conjuncts
each consisting of m predicate terms.

General containment checking: In this case, containment
checking consists of testing the satisfiability of the expres-
sion (P, A —=P;). Assuming that the negation of P; also con-
tains n conjuncts each with m predicate terms, the AND
with P, will factor in another n conjuncts making it a total
of n* conjuncts each with 2 -m terms that have to checked
for satisfiability. The checking of a conjunct with 2 - m terms
in the worst case could be O(m?). Thus the total complex-
ity for a satisfiability check among two queries becomes
O(n* -m?). Checking against all the M cached queries will
result in an overall complexity of O(M - n?-m?).
Template-based containment checking: Assume in this
case that the semantic cache consists of K templates, where
K <M. When a new query is received, and if it is not gener-
ated by an explicitly declared template, it must be matched
with one of the cached templates. For a query with n con-
juncts with m terms, the complexity of trying to match a
query with a single cached template is O(m-n). Given K
cached templates, the complexity is O(K -m-n). Once a
template is identified, testing for containment proceeds one
conjunct at a time. Each conjunct in the template is associ-
ated with a MAP, and therefore in the worst case, the num-
ber of MAPs to check against equals the number of con-
juncts n. Testing for containment within a single MAP is
O(1) for simple inequalities. For complex MAPs, as we de-
scribe in Section 4, the matching will be O(Ig[%]), where
% is the average number of queries that belong to the same
template. The complexity of containment testing within all
the MAPs associated with the template is O(n - lg[%}) The
overall complexity for template-based containment check-
ing is, therefore, MAX{(K -m-n), (n-1g[%])}, which is
much lower than that of the general approach.

4 Merged Aggregate Predicates (MAPs)

In this section, we discuss how MAPs are used to per-
form containment tests and how they are maintained when
queries are added and removed from the cache. The imple-
mentation of a MAP depends on the nature of the variant
conjunct. The variant part of a conjunct can be a single
predicate term or a bunch of terms. As discussed earlier,
when the WHERE predicate is converted to an AND-OR
normal form, there can be more than one conjunct with a
variant part in it. Recall that a MAP is associated with the
variant part of a single conjunct, therefore, a cached query
predicate is associated with a list of MAPs, one for each
conjunct which contains a variant part.

First, we discuss the case when the variant part of the
conjunct consists of a single predicate term. In particular,
we describe MAPs for each condition type occurring in such
a predicate term: i) equality, ii) inequality, iii) BETWEEN,

498 m

Proceedings of the 19th International Conference on Data Engineering (ICDE’03) COMPUTER
1063-6382/03 $ 17.00 © 2003 IEEE SOCIETY



Input : new query Q,, template (storing previous instan-
tiations)

Output : HIT or MISS

1 contained := MISS;

2 conj_map = template.conj_mapil;

3 for (int i=0; i < Q,.num_param_conjuncts; i++) do

4 new_conj = Q,.conjunct[il;

5 contained = conj_mapli].containCheck(new _conj);
6 if (contained != HIT) then

7 | return MISS;

return HIT;

Algorithm 1: Template-based containment checking
(mapContainCheck).

or iv) other conditions such as #, IN and NOT IN. Second,
we discuss the more complex case when the variant part of
the conjunct consists of several predicate terms. In this case,
more complex composite MAPs are needed.

To illustrate the overall approach of MAP-based contain-
ment checking, consider the following query template in its
original form as declared by the application:

P, = (cost <15V msrp < 20) A (num_reviews >?)
When converted to its AND-OR normal form, the query se-
lection predicate becomes:

P, = (cost <15Anum_reviews >?)V (msrp < 20 Anum_reviews >?)
The template has two conjuncts, C; = (cost < 15 A
num_reviews >?), and C, = (msrp < 20 Anum_reviews >7).
Both conjuncts have variant parts consisting of a single
predicate term. In this case, two simple maps are associated
with this template, conjmap[1l] and conjmap[2],
corresponding to the two conjuncts, C; and C,, respec-
tively. As instantiations of this template are inserted in
the cache, the two maps are updated accordingly based
on the parameters specified in the predicate. Upon re-
ceiving a new query predicate, for example (cost < 15V
msrp < 20) A (num_reviews > 12), the containment test is
reduced to: conjmap[1l].containCheck (12) AND
conjmap([2] .containCheck (12) as shown in Al-
gorithm 1.

An interesting dimension to aggregating predicates
arises when queries are removed from the cache due to
cache replacement. The unit of granularity of cache re-
placement in a query result or semantic cache varies from
one system to another. One approach is to remove all the
queries belonging to a given template together. Of course,
this template-based replacement is the simplest approach to
implement. In this case, it is not necessary to maintain any

additional information in a MAP, since the entire MAP will
be removed in a cache replacement decision. Another possi-
ble unit is an individual query. However, any query removal
should ensure that the value(s) stored in the MAP are appro-
priately adjusted. Some of the predicates will require extra
information to handle single query removals.

4.1 Equality predicates

In this case, we focus on a single conjunct that has a sin-
gle variant predicate term, ¢, which consists of an equality
test of type ‘col = ?°. Given m queries in the cache that
follow this template, we denote by #; through ¢, the instan-
tiations of their respective predicate terms. We express the
predicate terms, ¢; (where j € {1,...,m}), as tj : col = x;.
We desire an efficient method to test for the containment of
a newly received predicate term #( : col = xp in the union
of cached predicates with terms, ¢ through #,,. To achieve
this, we organize the values x| through x,, into a hash table.
An inclusion test is sufficient for containment.
Replacement. Under individual query-based replacement,
the cache replacement mechanism selects a query to evict
from the cache. Suppose that this is the j query which
was associated with a value x ;. During eviction, all we need
to do is remove the value x; from the hash table. This is
complicated, however, by the fact that x; may have been
referred to by another query that is inserted in the cache.
One solution to this problem is to associate a refcnt with
each value in the cache, which is incremented and decre-
mented whenever a query is added or removed from the
cache. Values with a zero refcnt in the hash table can
be safely removed. Another solution is to allow the inser-
tion of duplicate values in the hash table, one correspond-
ing to each query. This approach differentiates between two
values based on the identity of the query that inserted them.

4.2 Inequality predicates

Suppose ¢ is a predicate term of the type ‘col <?. As
before, the cached instantiations of the predicate terms are
denoted by #; through ¢, and expressed as t; : col < x;.
Upon receiving a new query predicate term ¢ : col < xo,
we want to quickly test its containment in ¢ through z,,.
Note that all we need in this case is a single variable, X =
MAX; ¢ {1....m)(t;), which stores the maximum value of the
x;’s. Similarly, if the term is of the form col >?, then, all
we need is a single variable, X = MIN; ¢ {17_,_’m}(xj). A
similar approach can be used with the operators < and >.
Howeyver, in addition to the max/min variable, we need to
recall whether the interval is open or closed. This approach
applies to numeric and string constants, as long as the string
constant does not contain regular expressions.
Replacement. Evicting a query with a value x; = X is not
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straightforward, because the new value of the maximum
(or minimum) X cannot be easily known. This is related
to the general problem of efficiently computing an aggre-
gate value over a data set which may be updated. One ap-
proach is to maintain a multi-set of all the values x; of all
cached predicates. A multi-set is a list augmented with a
refcnt marking how many times each value occurs in the
set (i.e., the number of queries which refer to that value).
Upon an eviction of a query with x; = X, the refcnt for
the value x; is decremented in the set and the aggregate
value recomputed. For example, to test the containment of
to : msrp < 20 against 3 previously cached instantiations,
say t1 :msrp <30, tp :msrp <45, t3 : msrp <25, we main-
tain the maximum value of all previously cached predicate
terms, i.e., 45, along with the values of all the cached predi-
cate terms and their refcnt, i.e., ((30,1),(45,1),(25,1)).

4.3 BETWEEN predicates

Our approach is to merge successive instantiations of
a BETWEEN predicate into an interval set, where all
overlapping intervals are merged together. Further, the
intervals are sorted to enable efficient binary search-
ing. Consider a list of predicate terms, expressed as 7; :
‘col BETWEEN x;j AND X;’. The interval set is de-
scribed as S; = {[x1,X1], [x2,X2], ..., [Xm, Xm| }. Verifying the
implication of fo = (#; V ... V1,,) requires checking if the
interval [xo,Xo] is a subset of the union of intervals in S;.

To perform a fast test of interval containment, we main-
tain Sy as a sorted interval array SA. Whenever a new
interval is added by a new instantiation of the template,
the interval [; is inserted in SA, merging it with any over-
lapping intervals. If there is no intervals in SA overlap-
ping with I, it is added to SA as a new element. Sup-
pose that there are ¢ intervals in SA, I} = [x1,Xi],....I; =
[x:,X;], which overlap with a new interval I = [xi,Xy].
Then these ¢ + 1 intervals are merged into the single in-
terval [min(xg,x1,...,x ),max(Xg, X1, ..., X;)]. Therefore, the
sorted interval array SA = ([x1,X], ..., [Xm,Xm]) has the fol-
lowing non-overlapping property:

xi <X; <xjpq foreveryi=1,...m—1.

Given any new interval Iy = [xp,Xp], we perform a binary
search of SA to check if there is an interval in SA which
subsumes /y. The search proceeds by finding if there is an
interval which contains xg, the lower bound of Iy. If one
exists, the upper bound of /) is checked for inclusion within
that interval. There should be at most one such interval in
SA. The complexity of this binary search is O(log,|SA|)
where |SA| is the number of intervals stored in SA.

tervals, we need to check if the interval can remain un-
changed or whether it must be broken up into two inter-
vals. This step requires considering the list of intervals in S
which overlap with the interval being removed.

4.4 Other predicates

There are some types of predicate terms which were not
mentioned in our discussion, such as # (col <> val),
IN (col IN (ci,c2,...)) or NOT IN predicates. Such pred-
icate terms can be transformed during the computation of
the AND-OR normal form into predicate terms which have
been already discussed. For instance, a NOT-EQUAL pred-
icate is logically equivalent to two comparison predicates
ORed together, ‘col < val OR col > val’. IN predicates are
logically equivalent to a set of equality predicates connected
by the OR operator. NOT IN is similarly equivalent to a set
of not-equal predicates connected by the AND operator. It
is worth noting, however, that handling /N predicates ex-
plicitly can be more efficient than converting them into a
list of equality predicates connected with the OR operator.
The extension of our approach to handle IN predicates ex-
plicitly is relatively straightforward.

4.5 Conjunctions of atomic predicates

Consider the case where the variant part of the conjunct
contains more than one variant predicate term. We denote
the variable part of the conjunct, C;, as C;. C; can have
predicate terms that refer to different columns, for example:
C; = (coly < ?) A(coly = ?) A(col BETWEEN ? and ?).
A single instantiation of the variant conjunct, é i, can there-
fore be thought to correspond to a region, or rectangle in k-
dimensional space. The dimensionality of the region space
is upper-bounded by the number of columns that appear
in ;. We associate a MAP with C; which maintains the
set of rectangles corresponding to the variant conjuncts of
all cached queries. Overlapping or adjacent rectangles are
merged if possible. In general, a MAP contains a set of
overlapping and/or disjoint rectangles. Checking for con-
tainment of a new variant conjunct associated with a new
query in the MAP translates into verifying whether the rect-
angle corresponding to the incoming query is contained
in the union of k-dimensional rectangles aggregated in the
MAP. To allow quick search of such composite MAPs,
one approach is to organize the rectangles corresponding to
cached queries using a memory-resident multi-dimensional
index such as an R-tree [8].

As amore detailed example, consider the following vari-
ant conjunct and its three instantiations:

Replacement. Evicting a query translates into removing gri é: = ;; ang Eg Eetweenz anj 1’)0 angg < IO
. . . . 1: = an etween 4 an ) an <
an 1nter\{al fr.om the 11.st.0f 1nt§rvals in the MAP. For nqn- C (A=10) and (B between6and8)  and C < 13
overlapping intervals it is straightforward. For merged in- C;: (A=10) and(Bbetween4and8) andC <5
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Each C; generates a rectangle in 3-d space. For instance, Cy
corresponds to 5, [4,10], (—ee, 10]. Note that the rectangles
corresponding to C and C3 in the above example cannot be
merged into a single one: Cpergeq: (A=10) and (B between
4 and 8) and C < 13. If we merge these two regions, a new
conjunct Cp: (A=10) and (B between 4 and 6) and C <
10 would be judged as contained in the MAP; however, a
tuple (A=10, B= 5, C=10) could be part of Cy but is neither
contained in C; nor Cs.

Replacement. To add a query, we add a rectangle and ad-
just the multi-dimensional index. When a query is evicted
the index can be adjusted lazily or immediately after inser-
tion.

S Template Detection

As described in Section 3, template-based query con-

tainment checking is much more efficient compared to the
general matching algorithm. Therefore, even if query tem-
plates are not declared explicitly by applications, it is ben-
eficial to infer such templates by detecting similarity be-
tween queries. Template inference is often required even
if the application declares templates explicitly (e.g., us-
ing the preparedStatement interface), because due to
space and connection management, applications often de-
allocate a prepared statement soon after its use. In this
section, we propose two algorithms to infer templates: (i)
a simple string-based constant-removal algorithm, and (ii)
a canonical-form ordering algorithm with enhanced infer-
ence capability.
Constant-removal: The constant-removal algorithm is
based on the following observation: instantiations of the
same query template should have similar WHERE predi-
cates and identical remaining clauses. To declare two pred-
icates as similar, we need to ensure that all their conjuncts
(C;) are similar. Two conjuncts are similar if they have the
same number of predicate terms and all the corresponding
predicate terms (¢;) are similar. Two predicate terms are sim-
ilar if they contain the same column name, the same com-
parison operator, but possibly different constant values.

The above definition of ‘similarity’ implies that two sim-
ilar queries become identical after removing all the constant
values in the queries. If there is a cached query Q; whose
constant-less query string matches exactly that of the new
query Q,, the new query is inferred to be an instantiation of
the template associated with Q;. Note that we simply match
the query string without any parsing, thereby, incurring low
overhead. Otherwise, the inference algorithm fails and re-
turns FALSE.

Canonical-form ordering: While the above algorithm is
highly effective in practice, it has some limitations. For ex-
ample, it does not detect similarity if the order of two com-
mutative terms in a predicate expression is switched around.

Input
Output : flag inferred

1 inferred := FALSE;
2 np :=toCanonicalForm(Q,.wherep);
3 for (each Q; in Q. such that (Q,.tablelist ==
O;.table list & & Qj.col list C Q;.col list) ) do
4 tp := Q;.canon_wherep);
if ((Qn.mint == Q,.mint) && (Q,.maxt == Q;.maxt)
) then
if (equalPredicates(np, tp)== TRUE) then
\; O,.template := Qy;

: new query Q,, set of cached queries Q.

W

inferred := TRUE;
break;

N=IN- R BN

return inferred;

Algorithm 2: Canonical-form template inference algo-
rithm canoninferTemplate.

The basic idea of this approach is to express the predicates
in a canonical form before performing the comparison. This
requires parsing the query predicate and converting it to
an AND-OR form, then expressing it in a canonical or-
der. Note that the steps of parsing and AND-OR normal
form conversion are required by the MAP-based contain-
ment checker anyway, therefore, this approach places no
extra overhead of its own. Once in AND-OR normal form,
each conjunct is first transformed into a canonical represen-
tation, by arranging its predicate terms according to lexico-
graphic order. Subsequently, the C;’s in the AND-OR nor-
mal form are in turn sorted lexicographically with respect to
each other. For example, following is an example predicate
before and after transformation to canonical form:

(SALARY > 40000 A MANAGER = ‘MIKE’) V (DEPT = 65)
(DEPT = 65) V (MANAGER = ‘MIKE’ A SALARY > 40000)

We also associate with each complex predicate two integers,
the maximum number of terms in any conjunct (maxt) and
the minimum number of terms in any conjunct (mint) of its
AND-OR normal form to speed up matching.

Comparing two predicates in canonical form can be per-
formed by comparing the resulting string representation of
the predicates. String comparisons can be accelerated by
computing signature codes over the strings corresponding
to cached templates.

Template indexing. To reduce the number of templates ac-
tually compared to a new query, Algorithm 2 contains an ad-
ditional filtering step. It first checks to verify whether both
predicates (the new and the cached) agree in the size of the
smallest and largest conjunct (mint and maxt) in the AND-
OR normal form of the canonical-form predicate. Other at-
tributes of a predicate can be used to do this filtering. An
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index over the mint and maxt attributes is built to speed up
the filtering of matching cached predicates.

When matching a new query against cached templates,
we have so far required that they both have the same number
of conjuncts, and that their conjuncts be similar. In fact,
this requirement can be relaxed. For example, a query can
have fewer conjuncts than the template it is matched with.
It is only required that each conjunct in the new query’s
predicate matches a conjunct in the cached template.

6 Evaluation

We evaluate the performance of the proposed approach
by comparing its achieved hit rate and containment check-
ing overhead to an implementation of general containment
checking. We first perform microbenchmarks that focus on
measuring the performance of containment checking in iso-
lation, then we compare end-user response time by integrat-
ing both implementations of containment checking in our
DBProxy cache.

Evaluation environment. Both implementation were in
Java and executed on a Pentium II 400 Mhz, with 128 MB of
memory, running Linux RedHat 7.1. Two traces were col-
lected from runs of two e-commerce benchmarks, namely
TPC-W [20] and the Trade-2 WebSphere Commerce Suite
(WCS) benchmark [11]. TPC-W is a transactional web
benchmark, emulating user browsing and shopping patterns
in an on-line bookstore. WCS is an integrated solution
which is used by a large number of companies for managing
on-line stores and applications. While TPC-W has a small
number of templates accessing a small number of tables,
WCS benchmark has many more templates targeting more
than 500 tables and has many indices and triggers. Trade-2
is a benchmark that exercises the integrated WCS system.
Table 2 describes the characteristics of the collected traces.
Traces. First, observe that the number of templates is much
smaller than the number of queries which confirms the in-
tuition that motivated our work on template-based query
containment. Second, observe that the query distribution is
highly skewed, with 70-80% of the queries mapping to the
top 5 templates. This observation motivated our work on ef-
ficient MAP indexing because a few MAPs would contain a
large number of queries.

Experimental methodology. In the first set of experiments,
the goal was to quantify the reduced cost of containment
checking along with the reduction of hit rate for different
cache sizes. Initially the cache was populated to the desired
size by running the trace. To capture the overhead, a query
mix, containing five queries most frequently appearing in
the trace, was executed, and the measurements were aver-
aged over 50 samples. The same query mix was re-executed
for each cache size data point, but each time changing the
variant parameters in the query randomly to avoid submit-

Trace # of # of # of % of queries
queries | templates | tables from top-5
templates
TPC-W | 11369 18 7 79%
Trade-2 | 6110 81 63 68%

Table 2. Characteristics of the traces used in the
microbenchmarks. The traces contain query logs col-
lected during the execution of the TPC-W and Trade-2 e-
commerce benchmarks. For the TPC-W trace, the log was
collected from a load of 4 emulated browsers accessing a
100K item store database. The Trade-2 log was collected
from a similarly configured system with two users.

ting the exact same query. The queries in the cache only
consist of the ones in the trace; those from the query mix
are never inserted. For measuring the overhead, only the
cache index was maintained without actually storing (or re-
trieving) the data in the local repository. The containment
checker recorded a hit if it was a previously cached query,
otherwise on a miss, the metadata (index and MAPs) was
updated.

The experiments include the cost of template inference,
as the application does not explicitly declare the templates.
Each query is submitted as a separate constant query with
no question marks. Our template inference engine classifies
the queries using the algorithms discussed in Section 5.
Containment checking overhead. The template-based
containment checker, as shown in Figures 3 and 4, is an or-
der of magnitude faster than the general-purpose checker.
Furthermore, the cost of template-based checking is rel-
atively independent of the cache size (i.e., the number
of queries in the cache) compared to the proportional in-
crease of the general-purpose checker. Thus template-based
matching is not only faster but also more scalable. Scalabil-
ity is achieved partly due to the number of templates be-
ing small and being largely independent of the cache size.
Secondly, the aggregation of queries into MAPs along with
binary or hash-based searches speeds up lookup. One in-
teresting observation is that the relative benefit of our ap-
proach (ratio of baseline to template-based) is higher with
TPC-W than with the Trade-2 benchmark. As the trace
statistics in Table 2 show, TPC-W has a smaller number of
tables, and correspondingly larger number of queries per
table. Under Trade-2 (WCS), the queries are distributed
across a large number of tables, with fewer queries per table.
Since the general containment checker must consider most
of the queries over the same table it has a larger overhead in
TPC-W than in the Trade-2 case.

Hit rate. Template-based checking has a slightly lower hit
rate (5-10%) compared to the general purpose checker as
shown in Figure 5 and 6. Since template-based matching
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Figure 3. Cost of containment checking versus cache size
for TPC-W.
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Figure 4. Cost of containment checking versus cache size
for Trade-2 (WCS).

does not check for containment across queries belonging
to different templates it sometimes results in false misses,
i.e., a query is declared a miss although it is contained in
a cached query. This is due to the underlying premise of
template-based checking that there is a much higher like-
lihood for a query to be contained in a cached query be-
longing to the same template. The general containment
checker, on the other hand, checks against all candidate
cached queries and has a higher hit rate. Template-based
matching tries to balance the tradeoff of lower hit rate with
faster containment checking, thereby reducing the total re-
sponse time as shown below.

Application to edge data caching over the Web. In this
experiment, we compare the total end-to-end response time.
The client machine ran 8§ emulated TPC-W browsers con-
nected to an edge server (Pentium II, 400 Mhz, 128 MB
RAM, Linux RedHat 7.1) using a fast Ethernet (100 Mbps)
network. The servlet running at the edge server performs
SQL queries to a back-end database server (Pentium III,
1 GHz, 256 MB RAM). The network connecting the edge
server and the origin has an emulated latency of 225 mil-
liseconds per average result set transfer. Our DBProxy dy-
namic data cache is deployed on the edge server, and trans-
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Figure 5. Hit rate versus cache size for TPC-W.
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Figure 6. Hit rate versus cache size for Trade 2 (WCS).

parently intercepts the JDBC-level queries being sent to the
origin server. The cache is described briefly in Section 2 and
more details can be found in [1]. In case of a hit, data is re-
trieved from the local cache, otherwise, a query is sent to the
origin server and the data inserted in the cache. In one ex-
periment we used a traditional containment checker, and in
the other we used our template based approach. The bench-
mark was executed for ten minutes to warm up the cache,
then end-user response time was measured. We recorded
an average response time improvement of 61% from 863
msec., with general containment checking to 329 msec.,
with template-based checking.

7 Related work

Earlier work on database caching investigated predicate-
based schemes and views to answer queries [18, 14, 5, 12,
6]. Recent papers have examined passive and active caching
schemes for web applications and XML data [15, 4, 10].
Luo and Naughton described an active caching technique
based on templates (forms) [15]. Our work considers a
much larger set of predicate types for template matching
that include numeric and string comparisons combined us-
ing conjuncts, disjuncts and negations. Our technique is
also able to infer templates transparently by intercepting in-
coming JDBC SQL requests.
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A wealth of previous work exists in the area of query
containment and equivalence [17, 13]. Previous work in the
area of materialized view routing (i.e., answering queries
by rewriting using materialized views) also describes tech-
niques for matching and containment. A good survey of
work on answering queries using views can be found in [9].
The view selection and rewriting issues are more general
than predicate expression containment. Most recently, Pot-
tinger et al. have proposed more scalable approaches to
the general view matching problem [16]. Our work dif-
fers in being focused on the query predicate expression con-
tainment issues and dealing with dynamically maintaining
such templates in the presence of addition and deletions of
queries in the cache.

8 Summary

Dynamic caching of application query results in a pred-
icate cache promises to be an adaptive solution with low
administrative overhead. In recent work, we have imple-
mented DBProxy, a prototype of a caching system which
maintains previous query results and answers new queries
from the cache whenever it can prove the containment of
the new query in the cached set. In this paper, we dis-
cussed the scalability challenges of query containment in
large predicate caches and proposed algorithms for fast con-
tainment checking in such an environment. We exploit the
template-based nature of queries generated by application
programs to accelerate the containment test. We propose al-
gorithms to infer templates by detecting similarity between
query predicates and for proving containment among sim-
ilar query predicates. We described the Merged Aggregate
Predicate mechanism to dynamically aggregate the ranges
of similar predicate terms for improving the efficiency of the
template-matching containment algorithm. The template-
matching and general containment checking algorithms can
be combined in a two-level scheme for obtaining high per-
formance as well as maximal hit rates. We conducted ex-
periments using our DBProxy caching testbed against the
TPC-W and the Trade-2 benchmarks. Our results show that
the template-based scheme provides an order of magnitude
improvement in query containment checking and significant
improvement in overall query response times.
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