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Abstract

Motivation: Identification of genes that can be used to predict prognosis in patients with cancer is

important in that it can lead to improved therapy, and can also promote our understanding of

tumor progression on the molecular level. One of the common but fundamental problems that ren-

der identification of prognostic genes and prediction of cancer outcomes difficult is the heterogen-

eity of patient samples.

Results: To reduce the effect of sample heterogeneity, we clustered data samples using K-means

algorithm and applied modified PageRank to functional interaction (FI) networks weighted using

gene expression values of samples in each cluster. Hub genes among resulting prioritized genes

were selected as biomarkers to predict the prognosis of samples. This process outperformed trad-

itional feature selection methods as well as several network-based prognostic gene selection meth-

ods when applied to Random Forest. We were able to find many cluster-specific prognostic genes

for each dataset. Functional study showed that distinct biological processes were enriched in each

cluster, which seems to reflect different aspect of tumor progression or oncogenesis among dis-

tinct patient groups. Taken together, these results provide support for the hypothesis that our ap-

proach can effectively identify heterogeneous prognostic genes, and these are complementary to

each other, improving prediction accuracy.

Availability and implementation: https://github.com/mathcom/CPR

Contact: jgahn@inu.ac.kr

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Identification of genes that can be used to predict prognosis in can-

cer patients is an important goal in bioinformatics, because these

genes can be used as biomarkers to provide patients with appropri-

ate therapies, as well as to help us understand molecular mechan-

isms of tumor progression (Bullinger et al., 2004; Sotiriou et al.,

2006). Numerous studies have utilized expression levels of several

prognostic genes to predict prognosis of various cancer types (Abba

et al., 2010; Buyse et al., 2006), using feature selection methods

such as Support Vector Machine (Sun et al., 2011) or Lasso (Sohn

et al., 2009) regression to obtain prognostic genes.

Recently biological networks have been extensively studied as

another potential means to understand disease (Barabasi et al.,

2011; Furlong, 2013). Some approaches predict cancer outcome and

identify key genes that result in poor prognosis using gene expres-

sion and various types of omics data, such as protein–protein inter-

action (PPI) networks or gene regulatory networks (Chuang et al.,

2007; Dao et al., 2011), or use gene co-expression networks to
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identify prognostic genes in network form (Ren et al., 2016; Wu and

Stein, 2012). We previously proposed a network-based method to

identify gene networks for the accurate diagnosis of prostate cancer

(Ahn et al., 2011); this approach exploits the differences of correl-

ations of gene pairs in the biological networks between two patient

groups, but does not show good performance in application to prog-

nosis data. Other approaches have been proposed for improving pre-

diction of cancer outcomes (Roy et al., 2014; Winter et al., 2012).

These methods identify prognostic genes using gene expression

measurements and several gene networks including PPI networks.

Genes are ranked according to their prognostic relevance using both

expression and network information using NetRank, which itera-

tively calculates gene scores in a similar way to PageRank, but add-

itionally uses correlation between gene expression values and

patient survival time (Winter et al., 2012), or t statistics or fold-

change of gene expressions between patients with good and poor

prognosis (Roy et al., 2014).

Those methods commonly suffer from the heterogeneity of

samples from cancer patients (Polyak, 2011), which makes predic-

tion difficult. Since the main known source of the heterogeneity is

genomic instability (Burrell et al., 2013), poor prediction may re-

sult from difficulties in identifying prognostic genes or biomarkers

that are specific to certain cancer patients. Breast cancer has sev-

eral genetic subtypes that have disparate clinical response and

tumor progression (Russnes et al., 2011), so there have been many

studies to deal with heterogeneity of breast cancer. Even one type

of breast cancer, TNBC (triple-negative breast cancer), has six sub-

types that shows different biological characteristics (Lehmann

et al., 2011).

A common approach to overcome the cancer heterogeneity prob-

lems is an integrative analysis of various omics data. Szeto et al. ana-

lyzed genomic, transcriptomic and proteomic data of TNBC

patients at various clinical time-points to see temporal heterogeneity

of TNBC (Szeto et al., 2017). Wang et al. proposed the network ap-

proach that integrates heterogeneous omics data and demonstrated

that resulting glioblastoma and breast cancer patient groups show

different survival profiles (Wang et al., 2016).

In the present study, we first clustered samples to deal with

heterogeneity, using principal components of whole genes. For

each cluster, we gave weights to edges in the functional interaction

(FI) networks using t statistics of gene expressions between sam-

ples with good and poor outcomes in the cluster, and applied a

modified PageRank algorithm to prioritize prognostic genes. Hub

genes among resulting prioritized genes were selected as bio-

markers to guarantee stable prediction accuracy among independ-

ent datasets. Then, we used Random Forest (Breiman, 2001) to

predict prognosis of patient samples from gene expressions of the

biomarkers.

This proposed approach outperformed the co-expression

network approaches and NetRank, as well as traditional feature

selection methods such as Lasso for predicting the prognosis of

patients with breast cancer. We confirmed that clustering of het-

erogeneous samples actually contributes to prediction accuracy.

In fact, we were able to find many cluster-specific prognostic genes

for each dataset and functional study showed that distinct bio-

logical processes or pathways were enriched in each cluster;

that is, our approach can actually enable detection of functional

modules reflecting characteristics of patient groups. These results

together provide support for the hypothesis that our approach

can effectively identify heterogeneous prognostic genes and that

these are complementary to each other, improving prediction

accuracy.

2 Materials and methods

2.1 Data preparation
We downloaded one high-throughput sequencing (HTS) data from

Broad Institute GDAC Firehose (Bitgda, 2016) and five microarray

(MA) datasets from Gene Expression Omnibus (GEO) (Barrett

et al., 2013) and van de Vijver et al. We used RSEM information for

20 501 genes from the HTS data of 189 patients. Four breast cancer

prognostic datasets, GSE3494 (Miller et al., 2005), GSE4922

(Ivshina et al., 2006), GSE7390 (Desmedt et al., 2007), GSE24450

(Heikkinen et al., 2011) and their clinical information were col-

lected from GEO. We also used 120 samples of van de Vijver dataset

(van de Vijver et al., 2002). For all data, each sample was labeled as

good prognosis if the patient survived more than 10 years (5 years

for HTS dataset and GSE24450), and labeled as poor prognosis if

the patient did not survive more than 5 years. Table 1 shows a sum-

mary of the described datasets. For all data, gene expression values

were normalized for each sample by z-scoring.

FIs network is derived from curated pathways, protein-protein

interactions, gene coexpression, Gene Ontology (GO) annotations

and text-mined protein interactions (Wu et al., 2010). We down-

loaded the network data from Reactome (Croft et al., 2014;

Fabregat et al., 2016), and the number of interactions is 150 322.

2.2 Cancer gene identification
We first computed principal components of gene expressions as at-

tributes, and applied K-means clustering to samples with k with

maximal silhouette score. For each cluster of samples, we computed

weights of edges in FI networks with t statistics of genes. Then we

applied the modified PageRank. It ranks genes by ratios of two

PageRank scores which are calculated using weighted and un-

weighted networks. The modified PageRank uses the following

formula:

sn
i ¼ 1� dð Þs0

i þ d
X

j2NEi

wijs
n�1
j

where sn
i denotes a score of gene i after n iterations, d is a damping

Table 1. Summary of gene expression datasets

Name #Total samples #Poor samples #Good samples #Total genes Characteristic for label Reference

BRCA 189 90 99 20 501 days_to_death GDAC firehose

GSE3494 157 36 121 13 181 Disease-Specific Survival Time Miller et al. (2005)

GSE4922 175 69 106 13 181 Disease Free Survival Time Ivshina et al. (2006)

GSE7390 140 24 116 13 181 Time of Overall Survival Desmedt et al. (2007)

GSE24450 121 25 96 25 106 10years followup time Heikkinen et al. (2011)

NKI 120 47 73 10 703 TIMEsurvival van de Vijver et al. (2002)
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factor (user parameter, 0 < d < 1), NEi is a set of genes which are

neighbors of gene i, and wij is calculated using:

wij ¼

tij jP
k2NEj

tkj j
on weighted networks

1

NEj

�� �� on un�weigthed networks;

8>>>><
>>>>:

where NEj

�� �� is the size of NEi. A damping factor d adjusts an influ-

ence of the FI network information. As a damping factor increases,

an influence of the network also increases. The default value of d is

0.7, which is found to be optimal through iterative experiments. ti is

t statistics to test whether the means of expressions of gene i are dif-

ferent between samples with poor and good outcomes. The initial

score s0
i has 1= Gj j, where Gj j is the number of genes, and thus the

sum of scores is always 1. We decided that a score is converged if its

change is less than 0.005, and observed the convergence after five it-

erations. So we computed average genes ranks to integrate gene sets

from clusters, after five iterations. We can consider high-ranked

genes as driver genes that are responsible for different prognoses.

The high-ranked genes do not all necessarily contribute to predic-

tion of prognosis, because they may not show differences in expres-

sions between poor and good outcomes, as effector genes do. Thus,

we selected cut (user parameter, 50 � cut � 150) hub genes whose

degrees were in the top 2% (in our FIs, the degree of the top 2% is

185) as biomarkers. We found that 2% is optimal percentage rate

through iterative experiments. We converted expression values of bio-

markers to rank values for each sample to avoid test set bias (Patil

et al., 2015), and applied Random Forest to the converted training

and test data. We selected Random Forest since it showed the best

result among widely used classification algorithms (Supplementary

Fig. S1). The entire pipeline is provided in Figure 1 and implemented

in Python with scikit-learn module (Pedregosa et al., 2011).

3 Results

3.1 Effect of sample clustering
The first step of our approach was clustering of samples, as they show

different gene expression profiles. We were able to confirm that sam-

ples are roughly divided into two or three groups in PCA plots (Fig. 2).

Note that those clusters did not show strong correlation with es-

trogen receptor (ER) status. Supplementary Table S1(a) shows that

cluster1 and cluster2 of GSE4922, and cluster1 and cluster2 of

GSE7390 have high ERþ sample ratios. However, clusters with

many ER- samples also had many ERþ samples, which means that

clustering does not necessarily reflect ER status. In fact, we found

many ERþ samples also had poor outcome, although generally ER-

samples shows poor outcome. As well as ER, PR status was not

related with outcome (Supplementary Table S1b). We will show

that the sample clustering actually contributes prediction accuracy

and identification of driver genes, in subsequent chapters (Figs 3–5).

3.2 Performance of prognosis prediction
We performed 10-fold cross-validation and independent tests for

different sets of two user parameters cut and d. Complete results are

provided in Supplementary Table S2.

Fig. 1. Gene selection procedure. K-means clustering partitions training data

using two principal components of whole genes. For each cluster, we give

weights to edges in FI networks using t statistics, and apply modified PageRank

to identify prognostic genes. The hub genes among them (degrees with the top

2%) were selected as biomarkers that are used to predict prognosis
Fig. 2. PCA plots. PCA plots using two highest principal components (PC) for

each dataset
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While performing independent tests, we found that datasets

showed very different distributions of gene expression, as shown in

Figure 3. That is, training and test data were not compatible when

we applied Random Forest and other classification algorithms. We

focused on the identification of reproducible biomarkers that can be

used for different independent datasets. Therefore, we designed in-

dependent tests as 10-fold cross-validation of test data with the gene

set identified using training data. We used one dataset as training

data and the other two as test datasets for independent tests. k in

K-means clustering was set to 2 or 3 which maximized silhouetted

scores. Optimal parameters are those with the best area under curve

(AUC) in cross-validations (Supplementary Table S3).

We named our approach CPR (Clustering and PageRank), and

compared it with CPR without clustering (hereafter, NCPR), Lasso

(Sohn et al., 2009), NetRank (Roy et al., 2014), Wu and Stein

(2012) and WGCNA (Langfelder and Horvath, 2008). Figure 4

shows ROC curve with BRCA as training data. We can see that our

classification accuracy in terms of AUC is higher than others

(0.001–0.094), except BRCA (training)-GSE4922 (test) and BRCA

(training)-GSE24450 (test) case. CPR is generally superior to

NCPR, which shows the effect of sample clustering. ROC curves

from other datasets as training data are provided in Supplementary

Figure S2, and it also shows CPR outperforms other approaches in

general. The numbers of genes used for all methods and datasets,

and the detailed information of genes using CPR is provided in

Supplementary Tables S4 and S5, respectively.

We also investigated the minimal sample (goodþpoor) size

that guarantees stable performance. Supplementary Figure S3

shows AUCs varying training sample sizes for all datasets, and we

can check that the performance is stable if the sample size is greater

than 80.

3.3 Analysis of oncogene inclusion ratio and

reproducibility
Next, we counted known breast cancer oncogenes and tumor sup-

pressor genes (TSG) collected from COSMIC (Forbes et al., 2017)

and calculated the p-value using hypergeometric test for each data-

set. Figure 5 shows that our genes had significantly low p-values

overall, which means that the genes we identified have higher
Fig. 3. PCA 3D scatter plot. PCA plots using three highest PCs for all datasets

Fig. 4. ROC curves. CPR is compared with NCPR (CPR without clustering), NetRank, Lasso, WGCNA and Wu & Stein, when using BRCA as training data. Complete

ROC curves are provided in Supplementary Figure S2. Parameters and number of genes used are shown in Supplementary Tables S4 and S5, respectively
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probability of including breast cancer oncogenes or TSGs. Note that

CPR shows better results than NCPR, which shows another effect of

sample clustering. Complete contingency tables are provided in

Supplementary Table S6.

We also calculated the ratio r of overlapping prognostic genes

among different datasets by following formula:

r ¼ number of genes included in at least three datað Þ
number of a union of the genesð Þ :

We observed that 37.8% of identified prognostic genes were over-

lapped at least three among different datasets in Figure 6, while

28.6%, 12.6%, 0.6% and 58.8% of genes were overlapped for Wu

& Stein, WGCNA, Lasso and NetRank, respectively. NetRank has

higher reproducibility, but identified genes are small number of ex-

treme hub genes, and did not show good prediction accuracy.

The 37.8% genes that we identified include two famous onco-

genes ERBB2 and TP53, and two tumor suppressor genes BRCA1

and CDH1. AKT1 was found only in GSE4922, CTCF was found in

GSE4922 and NKI, and PIK3CA and CCND1 were found in both

BRCA and GSE4922 (Fig. 7a–f). The PI3K-AKT1 signaling pathway

has been studied as a clinical target for the breast cancer. Although

AKT1 and PIK3CA1 are closely located on the pathway, PIK3CA1

may promote cancer through AKT-independent pathway (Vasudevan

et al., 2009) and it has been also reported that their mutations have

distinct effects on sensitivity to targeted pathway inhibitors in breast

cancer model (Beaver et al., 2013).

3.4 Functional analysis of the gene module
We were able to identify many common biomarkers on both clusters,

but there were also many cluster-specific biomarkers, as shown in

Figure 7(a–f). Famous oncogenes and TSGs including BRCA1, TP53,

ERBB2, CDH1, CTCF and PIK3CA were in common set, but also

many oncogenes and TSGs were able to be found in cluster-specific

sets. These results tell us that patient samples in different cluster can

have different tumor growth patterns or tumorigenesis factors.

For more details, we performed functional analysis on bio-

markers of clusters 0 and 1 of BRCA data. A biomarker belongs to

cluster x if its rank computed by our PageRank in cluster x is (i) less

than 1000 or (ii) less than ranks in all other clusters. The biomarkers

of cluster 0 and 1, respectively, were test using DAVID (Huang da

et al., 2009a,b) with default settings. Complete list of enriched GO

terms (biological process) is provided in Supplementary Table S7.

Among them, we selected some interesting GO terms (P-val-

ue<0.05) enriched in each cluster exclusively and visualized them

using Cytoscape (Shannon et al., 2003) in Figure 8.

We can observe many cluster-specific GO terms enriched, but we

will first focus on the 0response to leptin0 of cluster 0 and 0integrin-

mediated signaling pathway0 of cluster 1. Leptin is known to en-

hance breast cancer growth and progression (Andò et al., 2014), and

it contributes metastasis in ERþbreast cancer cell (Strong et al.,

2015). Integrins are receptors which are known to promote survival

of breast cancer cells and to control metastasis in breast cancer

(Felding-Habermann et al., 2001; Parvani et al., 2015). Hedrick

et al. also suggested that integrin-mediated signaling pathway as a

Fig. 6. Reproducibility of biomarker prediction. Each bar indicates the number

of genes that are selected as biomarkers for n datasets (1�n�6). For ex-

ample, 55 genes were selected as biomarker for only one dataset. Genes with

and without asterisk on the bars are oncogenes and TSGs, respectively

Fig. 7. Oncogene overlapping results among clusters. Overlap of identified

biomarkers including known oncogenes and TSGs among clusters for each

dataset. Genes with and without asterisk are oncogenes and TSGs, respect-

ively; A number represents the number of genes

Fig. 5. Significances of breast cancer oncogene and TSG inclusion ratio. For

each method and dataset, a significance of the ratio of identified oncogenes

and TSGs collected from COSMIC was calculated using hypergeometric test.

Complete contingency tables are provided in Supplementary Table S6
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novel target for treating high-risk breast cancer patients (Hedrick

et al., 2016).

We investigated the possibility that leptin, integrins, or their

related genes can be used as prognostic biomarkers. Figure 9(a) and

(b) shows that the Kaplan–Meier survival curves of STAT3 and

CCND1 which are closely related to leptin, show prognostic signifi-

cance (P-value<0.05) in cluster0 but not in cluster1. On the other

hand, the curves of ITGB1, ITGB3 and PTPN11 show prognostic

significance in only cluster1 in Figure 9(c) and (d). These results

show that STAT3, CCND1, ITGB1, ITGB3 and PTPN11 can be

cluster-specific prognostic biomarkers, which means STAT3/

CCND1 and ITGB1/ITGB3/PTPN11 may be mutually exclusive.

Beside leptin and integrin related terms, the relationships between

identified GO terms and breast cancer outcome have been investi-

gated. C-type lectin receptor pathway was enriched for biomarkers of

cluster 0. C-type lectin receptor is known to regulate adaptive immun-

ity and immunopathogenesis, and has been reported as a new target

for cancer immunotherapy (Yan et al., 2015). Ras signaling pathway

is known to hyper-activate breast cancer, and it has been studied ex-

tensively as a metastasis suppressor (Niemitz, 2013). Elevated Ras sig-

naling was enriched mainly in basal-like and Human Epidermal

growth factor Receptor 2-positive (HER2þ) subtype tumors, but Ras

combined with PIK3CA may be associated with luminal B-like tumor

that is ERþ (Wright et al., 2015). PIK3CA was identified in both clus-

ters in Figure 7(a). Hypoxia enriched in cluster0 is associated with

risk of metastasis and patient mortality. Since the hypoxic tumor

microenvironment affects cancer progression, recent preclinical stud-

ies have suggested a therapy with drugs that inhibit hypoxia-inducible

factors for good outcomes of patients (Semenza, 2016).

GO terms enriched from biomarkers of cluster1 are somewhat

different from those of cluster0. Wnt signaling pathway enriched

from genes of cluster1 is known to overexpress in TNBC (Dey et al.,

2013). Many researchers studied the pathway as a biomarker for pa-

tient’s survival and therapeutic target in TNBC (Holland et al.,

2013; Jang et al., 2015). The kinetochore is known to play a role in

correcting segregation of chromosomes in mitosis, and its aberration

causes chromosomal instability. Recent study has reported that a

centromere and kinetochore gene can be used as a marker for

prognosis and prediction of response to radiotherapy and chemo-

therapy (Zhang et al., 2016). Cluster 1 has also Interleukin-1 (IL1)

mediated pathway. IL1 is a cytokine that involved in cell growth

and death. It is reported to promote cancer cell invasion and metas-

tasis in TNBC (Bouchard et al., 2017).

4 Discussion

The proposed approach is capable of the identification of prognostic

genes in the form of networks that provide rich information about

Fig. 8. GO terms enriched in each cluster. Rectangle node: gene in cluster0; diamond node: gene in cluster1; ellipse node: gene in both clusters; Dotted line and

solid line circle block: GO term enriched in cluster0 and cluster1 genes, respectively; genes with star mark indicate known oncogenes or TSGs

Fig. 9. Kaplan–Meier survival graphs. Kaplan–Meier survival graphs with

mean expression of STAT3 and CCND1 for (a) cluster 0 and (b) cluster 1.

Same graphs with mean expression of ITGB1, ITGB3 and PTPN11 for (c) clus-

ter 0 and (d) cluster1
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molecular functions related to cancer development. More importantly,

our approach identifies different prognostic gene networks for hetero-

geneous patient sample sets, and allowing us to infer different biolo-

gical processes related to specific groups of samples by analyzing those

networks separately. In addition, hub genes of the union of those gene

networks were good prognostic biomarkers that showed better predic-

tion performance in terms of AUC than those of existing algorithms.

Existing studies to overcome the cancer heterogeneity problems

generally distinguish samples by known cancer subtype like ERþ/-

or aim to cluster patient groups with good and poor outcome using

various omics data. They study subtype specific biological processes

and investigate their relationship with cancer outcome. The pro-

posed approach effectively partitions the samples using principal

components of gene expression data. Those groups are not necessar-

ily subtype dependent, but we indirectly proved that those reflect

breast cancer heterogeneity by showing that resulting cluster-

specific gene networks enrich distinguished biological processes or

functions, in Figure 8. Moreover, the clustering step helps better out-

come prediction, which additionally supports our claim.

In this study, we clustered samples without prior information,

such as ER subtypes, because subtype was not strongly correlated

with prognosis (Supplementary Table S1a). To cluster with compre-

hensive information of whole gene expression, we used PCA on

whole genes and selected the two best principal components.

However, clustering strategies can vary for different datasets. For

example, more principal components can be used, or specific groups

of genes can be useful to divide samples that show different expres-

sion patterns for those genes. In the future, we will apply our ap-

proach to various kinds of cancer data, varying clustering strategies.
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