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Abstract

Rule discovery is an operation that uncovers useful rules
from a given database. By using the rule discovery pro-
cess in a stock database, we can recommend buying and
selling points to stock investors. In this paper, we discuss
storage structures for efficient processing of queries in a
system that recommends stock investment types. First, we
propose five storage structures for efficient recommending
of stock investments. Next, we discuss their characteris-
tics, advantages, and disadvantages. Then, we verify their
performances by extensive experiments with real-life stock
data. The results show that the histogram-based structure
performs best in query processing and improves the perfor-
mance of other ones in orders of magnitude.

1. Introduction

Time-series data is a list of changing values sampled at
fixed time intervals [7]. It reflects the status changes of
objects in nature and economy as time passes. In many
applications, an element value in time-series data is sig-
nificantly affected by its preceding values accumulated so
far [4]. Thus, by analyzing past element values in time-
series data, we can find the regularities and also form their
model, thereby predicting the values to appear in the near
future.

Stock price sequences are a typical example of time-
series data [1, 3, 5]. Since the goal of stock investors is
to earn high return, it would help investors achieve success-
ful stock investments to recommend proper buying and sell-
ing points via analysis of the stock price sequences. Each

stock investor has his/her own conditions for buying or sell-
ing stocks. To meet requirements of a variety of stock in-
vestors, it would be so useful to develop a system that au-
tomatically recommends stock items whose price changing
patterns come to satisfy the conditions required by individ-
ual investors.

In our previous work [6], we developed a system that rec-
ommends investment types to stock investors by discover-
ing useful rules from past changing patterns of stock prices
in a database. We proposed a new method that discovers
and stores only the rule heads rather than the whole rules
in a rule discovery process [6]. This allows investors to
impose various conditions on rule bodies flexibly, and also
improves the performance of a rule discovery process by re-
ducing the number of rules to be discovered. For efficient
discovery and matching of rules, we proposed methods for
discovering frequent patterns, constructing a frequent pat-
tern base, and indexing those patterns. We also suggested
a method that efficiently finds the rules matched to a query
from a frequent pattern base, and proposed a method that
recommends an investment type by using the rules.

In our stock investment system, there are a large num-
ber of stock investors, who issue queries on multiple stock
items of interest. When a query is requested to process,
stock prices related to the query are accessed from disk for
recommending an investment type. This incurs a number of
random disk accesses, thereby causing degradation of sys-
tem performance. In this paper, we propose a variety of
storage structures that reduce disk accesses and CPU com-
putations, and then discuss their advantages and disadvan-
tages. We also evaluate their performances via extensive
experiments.
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2. Stock Investment Recommendation System

In this section, we explain the rule model and the query
model proposed in reference [6].

2.1. Rule model

In this paper, we use the following form of a rule to ex-
press the trend of changing stock prices. Here, H and B
denote a rule head and a rule body, respectively. This rule
implies that B happens after time t since H has occurred.

H −→t B(s, c)

Next, we discuss (s, c) in the rule. A changing pattern
can be formed as a rule head only when a sufficient number
of stock sequences support the pattern. s defined in the fol-
lowing is called a support, which means how many times
the pattern P corresponding to H appears in past stock se-
quences.

s(H) =
# occurrences of patterns that match H

# occurrences of patterns whose length
is same as that of patterns that match H

× 100

Also, for being formed as a rule, a set of sequences that
satisfy the above support should show a similar tendency in
the time range of the rule body. c defined below is called a
confidence, which represents how many stock sequences
matched to H satisfy the condition on B together.

c(H, B) =
# occurrences of patterns that match H

and satisfy the conditions of B

# occurrences of patterns that match H
× 100

Our approach discovers those rules whose support and
confidence are both larger than predetermined thresholds
during analyzing the past stock sequences. If a recent
changing pattern of an investor’s stock item of interest is
matched to some H , it recommends an investment type by
referring to its B. Possible investment types to be rec-
ommended are ‘BUY’, ‘SELL’, ‘HOLD’, and ‘NO REC-
OMMENDATION’. They are decided by conditions for B,
which are highly dependent on propensities of investors.

Figure 1 shows a simple example of a stock price change.
In this stock data, pattern a© occurs three times. After a
time interval b© since then, the price is shown to increase
twice and is shown to decrease once. From this fact, if pat-
tern a© appears again, the system recommends ‘BUY’ as
an investment type for this stock because the price is likely
to increase with probability of 0.66. In this example, we
regarded a pattern occurring three times as frequent. How-
ever, the system regards a pattern frequent only when its
support is more than a minimum threshold, thereby consid-
ering it to be a rule head [2].

 

�

���

���

���

���

�����

�����

�����

�����

�����

� � � �� �	 �� �
 �� �� �� 	� 	� 	� �� �	 ��

����������	�

�
��
�
�
��
�	
�


��
�
�


��

� � � � � � � � �

�������� �������� �������� 


���
����������������������� ����
��������

Figure 1. An example showing the rule model.

2.2. Query model

Definition 1 Q, query form
A query Q for requiring recommendation types is formu-
lated in the following form.

Q = (I, T,BL, [α, β],mC)

Each variable has the meaning as below.

• I: the stock item of interest.

• T : the time interval between the end of a rule head and
the beginning of a rule body.

• BL: the length of a rule body.

• [α, β]: the range of average increase ratio for retain-
ing the current stock item. Their actual meanings will
be explained in Definition 2.

• mC: the minimum confidence, which is set to more
than 0.5. The reason for this setting will be also ex-
plained in Definition 2.

The system executes a query Q whenever the price of
stock item I is changed. If the pattern obtained so far is
matched to some frequent pattern, it recommends an appro-
priate investment type by referring to the corresponding rule
bodies. The result of each query processing, F (Q), has the
following value.

Definition 2 F (Q), the result of processing a query Q
For every case that supports the rule head, which is matched
to Q, we calculate its average increase ratio r by com-
paring the end price of the rule head to the average price
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of the rule body. As a result, F (Q) for query Q =
(I, T, BL, [α, β],mC), is defined as follows.

F (Q) = X, X ∈ {SELL, HOLD, BUY, NONE},
where α and β are the minimum and maximum values for
selecting ‘HOLD’, respectively. The recommendation type,
X , is determined as follows.

• SELL: If the ratio of cases satisfying (r ≤ α) is
larger thanmC.

• HOLD: If the ratio of cases satisfying (α < r < β)
is larger thanmC.

• BUY : If the ratio of cases satisfying (r ≥ β) is larger
thanmC.

• NONE: Otherwise (All three r’s are less thanmC)

As stated in Definition 1,mC is required to set to at least
0.5 in order to avoid more than one investment type from
being recommended. When F (Q) has a value of X , we
denote it as F (Q) = X and read it as “X is recommended
as a result of processing query Q.”

The proposed approach enables stock investors to eas-
ily adapt the query model to suit their needs or application
environments. Thus, it provides a fundamental framework
for adaptive recommendation systems for stock investment.
According to the experimental results, the system provides
more than 70% satisfaction ratio in most cases [6].

3. Proposed Storage Structures

This section proposes storage structures that help process
queries efficiently in a stock recommendation system.

3.1. OSM: Offset Storage Method

If a list of recent changing stock prices is matched to a
frequent pattern, the system recommends a corresponding
investment type for this stock item by analyzing their sub-
sequent stock prices.

For each stock item, this method maintains a data file
storing all the original changing prices and an index file
storing pairs of <fPattern, listOfPositions>, where fPattern
is a frequent pattern discovered and listOfPositions is a list
of positions, each of which points to the location of an oc-
currence of the frequent pattern in the data file(see Figure
2). If frequent pattern ‘ACD’ appears in stock item I2, from
its index file, the method finds all the positions at which
the pattern occurred. Then, the method computes a final
recommendation type by reading prices occurring after ev-
ery pattern ‘ACD’ in original stock data files. We call this
method OSM(offset storage method).
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Figure 2. OSM: Offset Storage Method.

OSM is very simple and requires small extra storage
space. However, for stock price prediction, this method
has to read stock prices following all the occurrences of the
frequent pattern that are scattered over an entire database.
Thus, this method incurs a large number of random disk ac-
cesses during query processing.

3.2. VSM: Value Storage Method

A solution to the problem with OSM is that, if some val-
ues are highly likely to be accessed together, we store them
in physically adjacent locations within disk. To the end, for
each frequent pattern, we store a predetermined number of
stock prices following every occurrence of the frequent pat-
tern. This method sequentially accesses those prices stored
together in disk. This method is expected to achieve the
performance improvement in comparison with OSM.
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Figure 3. VSM: Value Storage Method.

Suppose that stock prices following those occurrences of
pattern P are stored as in Figure 3. Here, m is the number of
occurrences of pattern P, and n is the maximum of T+BL to
be used in an application. Vxy is the y-th price from the last
price of the x-th occurrence of pattern P, and Vxp is the last
price of the x-the occurrence of pattern P. With this storage
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method, we compute the stock price increase rate rx for the
x-th occurrence of pattern P as follows.

rx =

∑T+BL+1
i=T+1 Vxi

bl − VxP

VxP

We call this method VSM(value storage method). VSM
can effectively avoid random disk accesses during query
processing.

3.3. ADSM: Accumulated Difference Storage
Method

For every occurrence supporting a frequent pattern, the
average stock price in a rule body is computed during query
processing. If we store accumulated differences of adja-
cent stock prices instead of original stock prices, we reduce
computations of average stock prices in rule bodies.
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Figure 4. ADSM: Accumulated Difference
Storage Method.

Suppose that the summations of stock prices are stored as
in Figure 4. Here, m is the number of occurrences of pattern
P, and n is the maximum of T+BL. Also, Axy is computed
as below.

Axy =
y∑

i=1

Vxi

We compute the stock price increase rate rx for the x-th
occurrence of pattern P as follows.

rx =
Ax(T+BL+1) − Ax(T+1)

bl − VxP

VxP

We call this method ADSM(accumulated difference stor-
age method). ADSM efficiently computes the summation
of the (T+1)-th to the (T+BL+1)-th stock prices after each
occurrence of pattern P. This makes the computation of the
stock price increase rate reduced from O(m×BL) to O(x),
and also makes disk accesses reduced because it accesses
only the 3-rd column in the storage.

3.4. RSM: Ratio Storage Method

When value T is fixed in some applications, the stock
price increase rate can be pre-computed and stored. With
this method, the computation time is significantly reduced
in query processing. We call this method RSM(ratio storage
method).
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Figure 5. RSM: Ratio Storage Method.

Suppose that the stock price increase rate after the occur-
rences of pattern P is stored as in Figure 5. Here, m is the
number of occurrences, and n is the maximum of (T+BL).
Vxy is the stock price increase rate from the 1-st price to the
y-th price compared to the last price of the x-th occurrence
of pattern P. The stock price increase rate Rxy is computed
as follows and then stored in a database.

Rxy =

∑y
i=1 Vxi

y − VxP

VxP

In case T=0, we can obtain the stock price increase rate
easily by finding Rxy where y=BL. In query processing, the
CPU overhead is considerably reduced owing to the pre-
computation, and the disk access overhaed is also reduced
because only one column is accessed from disk. RSM, how-
ever, is applicable only when value t is fixed.

3.5. HSM: Histogram Storage Method

The pre-computation of the stock price increase rate is
possible if T and BL are fixed in applications. In the recom-
mendation step, this stock price increase rate is compared
to the range [α, β] in order to determine the recommenda-
tion type. If we store ratios of three cases: (1) the increase
rate is smaller than α, (2) the increase rate is larger than β,
(3) the increase rate is in between α and β, we can provide
the recommendation type with this information. Thus, as
in RSM if histograms are constructed by computing the in-
crease rates in advance, query processing is performed with
this information. Figure 6 shows this method.
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Figure 6. HSM: Histogram Storage Method.

The number of occurrences in each interval of the stock
price increase rate is stored in a form of a histogram. In our
case, the entire range(-15%∼15%) of the histogram was di-
vided into 30 intervals in step of 1%. n is the maximum of
T+BL. Nr/i is the number of occurrences that have stock
price increase rate between [r-1%, r%]. We call this method
HSM(histogram storage method). With HSM, the size of
a histogram does not increase even though the size of the
original data size increases. Also, the size of an entire his-
togram is fixed, the computation is reduced from O(n) to
O(1). As the same as RSM, it is applicable to situations
where value T is fixed. However, even when value T varies,
it can be applied by building more than one histogram for
multiple values of T since its space overhead is very small.

4. Performance Evaluation

For performance evaluation, we first extracted three-
month data from the Korean stock database KOSPI [8]. We
set the maximum length of the stocks after the occurrence
of frequent patterns as 20, and created 108 queries for each
one of 905 stock items by combining the following param-
eters: (1) α: choose one among -0.003, -0.002, and -0.001,
(2) β: choose one among 0.001, 0.002, and 0.003, (3) T: fix
at 0, (4) bodyLen: choose one among 1, 3, and 5, (5) min-
imum confidence: choose one among 50%, 60%, 70% and
80%. All experiments were performed on the PC equipped
with Intel Pentium 2.4GHz CPU, 1GB memory, and Win-
dow 2003 Server operating system.

We performed three kinds of experiments to evaluate
the performance of the proposed storage structures. In the
first experiment, we measured the disk space requirement
of each storage structure. In the second experiment, we
compared the storage structures in terms of the elapsed time
for processing queries. In the final experiment, to evaluate

the scalability of the storage structures, we measured their
query processing performance while increasing the size of
a data set.

Figure 7 shows the result of the first experiment. The X-
axis represents each one of the five storage structures and
the Y-axis does its disk space requirement in the unit of gi-
gabyte(GB). The result reveals that OSM, VSM, ADSM,
and RSM require the disk space of 0.11 GB, 1.2 GB, 1.2
GB, and 1.1 GB, respectively. That is, compared to OSM
which stores the original data without any modification,
VSM, ADSM, and RSM require about 12 times larger disk
space. On the contrary, HSM requires less storage space
than OSM. Therefore, by building separate HSMs for var-
ious starting points for prediction, we can easily overcome
the major shortcoming of HSM that it can be used only for
a specific starting point for prediction.
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Figure 7. Disk space requirement of five stor-
age structures.

Figure 8 shows the result of the second experiment. The
X-axis represents each one of the five storage structures and
the Y-axis does its query processing time in the unit of sec-
ond. The result reveals that OSM, VSM, ADSM, RSM, and
HSM required 3553.01 seconds, 3775.97 seconds, 3391.83
seconds, 2763.12 seconds, and 20.89 seconds, respectively,
for processing all the queries. Note that, compared to OSM
which stores the original data without any modification,
VSM requires 1.6 times longer. This can be interpreted that,
with the stock data stored sequentially, we have to read dif-
ferent files for different frequent patterns, which lowers the
hit ratio of disk cache and subsequently increases the query
processing time. The time of ADSM for query processing
is about 1.05 times and about 1.11 times less than those of
OSM and VSM, respectively. The time of RSM for query
processing is about 1.29 times, about 1.37 times, and about
1.23 times less than those of OSM, VSM, and ADSM, re-
spectively. In case of HSM, its query processing time is
about 170.08 times, about 180.75 times, about 162.37 times,

279

Authorized licensed use limited to: Yonsei University. Downloaded on February 8, 2009 at 23:47 from IEEE Xplore.  Restrictions apply.



and 132.27 times less than those of OSM, VSM, ADSM,
and RSM, respectively.
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Figure 8. Elapsed time of five storage struc-
tures for query processing.

In the final experiment, to evaluate the scalability of the
storage structures, we measured their query processing time
while duplicating the original data set to increase its size
two times, three times, and four times. Figure 9 shows the
result of the final experiment. The X-axis represents the
ratio of the size of the data set being used to that of the orig-
inal data set, and the Y-axis does the query processing time
in the unit of second. From the figure, we can see that the
query processing time of the four storage structures other
than HSM increases linearly to the size of data set. This
is because the increase of the size of data set causes the
increase of disk space requirement of the four storage struc-
tures which subsequently incurs the increase of their query
processing time. On the contrary, the query processing time
of HSM is almost constant regardless of the increase of the
size of data sets. This is because the size of HSM is not
affected by the size of data set.

In summary of the experimental results, HSM utilizing
histograms shows the best performance in terms of disk
space requirement, query processing time, and scalability.

5. Conclusions

This paper addresses storage structures that make queries
efficiently processed in a realtime stock recommendation
system. The proposed storage structures were devised to
improve the performance of query processing by reducing
the number of disk accesses as well as CPU computations.
They have different characteristics in the accuracy, space,
and processing time. Performance evaluation with experi-
ments was performed for comparing those proposed storage
structures. The results reveal that HSM shows best perfor-
mance and also maintains performance not that changeable
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Figure 9. Query processing time with increas-
ing data set sizes.

with the size of the original data file.
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