
RN-Cluster: Discovering coherent biclusters which is Robust to Noise

Jaegyoon Ahn1, Youngmi Yoon1,2, and Sanghyun Park1
1. Computer Science Department, Yonsei University, South Korea

2. Information Technology Department, Gachon University of Medicine and Science, South Korea
{ajk, amyyoon, sanghyun} @cs.yonsei.ac.kr

Abstract

A bicluster is a subset of genes that show similar
behavior within a subset of conditions. Biclustering
algorithm is a useful tool to uncover groups of genes
involved in the same cellular process and groups of
conditions which take place in this process. We are
proposing a polynomial time algorithm to identify
functionally highly correlated biclusters. Our
algorithm identifies 1) the gene set that follows
additive, multiplicative, and combined patterns
simultaneously that allow high level of noise, 2) the
multiple, possibly overlapped, and diverse gene sets, 3)
biclusters with negatively correlated as well as
positively correlated gene set simultaneously, and 4)
gene sets whose functional association is strongly high.
We validated the level of functional association of our
method, and compared with current methods using
GO.

1. Introduction

Not all the genes in microarray dataset participate in
a particular cellular process, and not all samples can be
observed in a particular cellular process. We can
expect subsets of genes to be co-regulated under
certain experimental conditions, but to behave almost
independently under other conditions [1]. Finding the
set of co-regulated genes can lead to identify the
functionality of the group of genes and eventually find
the genetic pathways. Cheng [2] named the data
mining technique that finds a submatrix of coherent
gene set and sample set in a microarray as biclustering.

Many biclustering algorithms have been introduced,
and biclustering is proven to be a NP-hard problem [2],
so all these algorithms used heuristic methods or
probabilistic approximation. Accordingly strengths and

weaknesses of each algorithm are various and the
patterns that each biclustering algorithm identified are
also various. Biclustering algorithms could be divided
into two groups largely by the patterns they find.

 Algorithms that find additive or multiplicative
patterns:
δ-biclustering [2] uses mean squared residue of a

submatrix to find biclusters. As a result, it finds
additive or multiplicative co-regulation patterns. One
weakness of δ-biclustering is that it allows only a small
degree of noise. Thus it can identify strict patterns
only. Also it can easily miss overlapping clusters due
to the random value substitutions once a bicluster is
identified.

p-Cluster [3] first scans the dataset to find all
column-pair and row-pair maximal clusters called
MDS. Then it does the pruning in turn using the row-
pair MDS and the column-pair MDS. It then mines the
final clusters based on a prefix tree. However, p-
Cluster is not robust to noise, either.

Tri-Cluster [4] is the first algorithm that mines 3
dimensional microarray dataset. It makes a DFS(Depth
First Search) tree whose node is the genes which show
same range of fluctuation within user specified
threshold ε. If ε is too big, DFS tree could grow too
deep to complete the mining. However, Tri-Cluster
with small ε does not allow high degree of noise.
Moreover, its time complexity is exponential to the
number of samples.

reg-Cluster [5] mines additive and multiplicative
co-regulation patterns. It defines dij as a difference of
the gene expression value between conditions ci and cj.
Then it finds the gene set whose ratio of d01 and dij is
within ε. Although the idea of mining additive and
multiplicative patterns together is novel, it has a few
problems. First, finding a proper ε is very difficult job.
If ε is too big, the gene set in a bicluster would have
many false positive genes. And if ε is too small, the
gene set in a bicluster would have many false negative
genes. Second, it constructs a DFS tree like Tri-
Cluster. Thus it has same problems with Tri-Cluster.

This work was supported by the Korea Science and Engineering
Foundation(KOSEF) grant funded by the Korea government(MOST)
(No. R01-2006-000-11106-0).

International Conference on Biocomputation, Bioinformatics, and Biomedical Technologies

978-0-7695-3191-5/08 $25.00 © 2008 IEEE
DOI 10.1109/BIOTECHNO.2008.8

131

International Conference on Biocomputation, Bioinformatics, and Biomedical Technologies

978-0-7695-3191-5/08 $25.00 © 2008 IEEE
DOI 10.1109/BIOTECHNO.2008.8

131

International Conference on Biocomputation, Bioinformatics, and Biomedical Technologies

978-0-7695-3191-5/08 $25.00 © 2008 IEEE
DOI 10.1109/BIOTECHNO.2008.8

131

The number of nodes of DFS tree becomes
exponential as the level grows. Therefore, the
algorithms that construct DFS tree have common
problem that the number of resulting biclusters are
extremely many. That is because all the biclusters
which are slightly different are accounted into result. It
is a difficult problem to examine all these biclusters
and to choose the one among the similar biclusters.
The noise level that the previously mentioned
algorithms allow is not enough to find all the
meaningful patterns. Thus we could say that they
commonly find strictly additive or multiplicative
patterns.

 Algorithms that find pattern by keeping ordered
sequence:
OPSM [1] defines a cluster as a submatrix of the

original microarray matrix after performing column
permutation separately for each row, whose gene
expression values are in a non-decreasing pattern.
Although OPSM shows good GO validation result [6],
it is problematic that OPSM can find only one bicluster
at a time. It could miss many meaningful biclusters
hidden in the microarray data. OP-Cluster [7] and
KiWi [8] use different algorithm with OPSM, but
basically use same definition of OPSM. Commonly,
OPSM based algorithms have possibility that the
biologically significant patterns which do not preserve
the order could be missed [9].

In this paper, we propose a new model for biclusters
with functionally highly correlated gene expression
data called RN-cluster. 1) RN-cluster identifies the
gene set that follows additive, multiplicative, and
combined patterns within user specified threshold
simultaneously. Combined pattern of additive and
multiplicative shape allows highly flexible patterns
with specified level of noise tolerance and allowing
high level of noise does not require exponential time or
space complexity in RN-cluster, which means that RN-
Cluster is robust to experimental noise. 2) RN-cluster
identifies the multiple, possibly overlapped gene sets
while guaranteeing gene-diversity in a bicluster by
complying with user specified similarity threshold. 3)
RN-cluster identifies biclusters with negatively
correlated as well as positively correlated gene set
simultaneously. 4) RN-cluster identifies biclusters
whose functional association is strongly high. This
functional association is validated using GO database.

2. PRELIMINARIES

This section describes the notations and preliminary
concepts before we detail the algorithm.

2.1 Notations
G A set of genes
S A set of samples

(O, T) A submatrix of the data set, where O ⊆ G, T ⊆ S
g0, g1, … Genes in O
s0, s1, … Samples in T

cij Expression value of gene gi on sample sj
dk

ab ckb- cka, difference of expression values of sample
sa and sample sb on gene gk

ti
cd di

ab/di
cd, ratio of gene gi, where sa and sb are the first

and second samples in RN cluster, respectively
δ User-specified maximum ratio threshold (> 1)

mg User-specified minimum # of genes of a RN cluster
ms User-specified minimum # of samples of a RN

cluster

2.2 Preliminary concepts
Let O = {g0, g1, … , gm-1} and T = {s0, s1, … , sn-1},

then cij would be the expression level of gene gi in
sample sj. Let C be a m x n submatrix (O, T) of the
dataset (G, S), then we can write C = (O, T) = {cij}, i �
[0, m-1] and j � [0, n-1].

Definition 1 (RN-cluster). Let C = (O, T) be a

bicluster, where gi, gj, gk � O and T = {sa, sb, … , sc, sd,
…}. C is a RN -cluster iff C satisfies the following
properties:

1. di
ab ≠ 0, dj

ab ≠ 0, di
cd ≠ 0 and dj

cd ≠ 0
2. sign(ticd) = sign(tj

cd), where sign(x) returns -1 if
x is negative and +1 if x is positive for all a > 1

3. |tj
cd| / δ ≤ | ticd| ≤ |tk

cd| x δ, where |tj
cd| and |tk

cd|
are maximum and minimum |thcd| values for gh
� O, respectively

4. |O| ≥ mg ≥ 2 and |T| ≥ ms ≥ 3

Definition 2 (p-RNC). When RN-Cluster C = (O, T)
and |T| = p, then we refer to C as p-RNC. p refers to the
number of samples involved in the bicluster.

For example, suppose there are 10 x 6 microarray

dataset (G, S) as shown in Table 1. Let 2-RNC be G x
{s0, s2} submatrix, ms = 3, mg = 3 and δ = 2. If we
examine sample s3, then T={s0, s2, s3}. The dk

02 and
dk

23 for gene gk are shown in table 2.

Table 1. 10 x 6 microarray dataset
gene\sample s0 s1 s2 s3 s4 s5

g0 0.15 -0.07 -0.25 -0.3 -1.12 -0.67
g1 0.21 0.03 0.18 -0.27 -0.32 0.62
g2 -0.03 -0.07 0.28 0.32 -0.27 -0.36
g3 -0.25 0.58 0.77 0.28 0.32 0.65
g4 0.11 0.04 0.75 0.82 0.21 -0.2
g5 0.24 0.31 0.95 0.12 0.18 0.69
g6 -0.3 0.22 0.02 -0.64 0.06 -0.04
g7 -0.15 -0.25 0.18 0.06 -0.15 -0.17
g8 0 -0.74 -0.38 0.87 -0.34 0.12
g9 -0.15 0.2 0.31 0.15 0.04 -0.22

132132132

Table 2. Difference values and ratio of difference values for gene set O
 g0 g1 g2 g3 g4 g5 g6 g7 g8 g9

dk
02 -0.4 -0.03 0.31 1.02 0.64 0.71 0.32 0.33 -0.38 0.46

dk
23 -0.05 -0.45 0.04 -0.49 0.07 -0.83 -0.66 -0.12 1.25 -0.16

| tk
23| 8 0.067 7.75 2.08 9.14 0.86 0.48 2.75 0.30 2.88

We can see that bicluster B1 with gene set O = {g0, g2,
g4} and sample set T = {s0, s2, s3} satisfies all the
properties: 1) dk

02 and dk
23 for k = 0, 2, 4 are not zero,

2) dk
02 and dk

23 for k = 0, 2, 4 have same sign, 3) the
values max(|tk

23|) = 9.14 when k = 4, min(|tk
23|) = 7.75

when k = 2 and | tk
23| = 8 when k = 0. Thus, 9.14 / 2(=

4.58) < 8 < 7.75 x 2(= 15.5), 4) |O| = 3 ≥ 3 and |T| = 3
≥ 3. Thus B1 can be said to be a 3-RNC. Similarly, we
can see that bicluster B2 with gene set O = {g3, g7, g9}
and B3 with gene set O = {g5, g6, g8} satisfies all the
properties, thus B2 and B3 can be said to be a 3-RNC.

3. ALGORITHM

RN-Cluster mines a set of genes that behave
similarly through a set of samples. RN-Cluster has two
main steps: 1) get the initial 2-RNC set whose samples
are all possible sample pairs, 2) for each p-RNC, get
the (p+1)-RNC. We describe the details of each step.

3.1 Get the initial 2-RNC set

The set of samples {(si, sj)} where i < j and the set of
genes {g0, g1, … , gm-1} form a 2-RNC. The number of
all the 2-RNCs is n(n-1) / 2, which are all possible
sample pairs. For example, in Table 1, possible sample
sets of 2-RNC are {s0, s1}, {s0, s2}, …, {s0, s3}. Note
that if ms = 3, then {s0, s5}, {s1, s5}, {s2, s5}, {s3, s5}
and {s4, s5} cannot form a 2-RNC, because it cannot
grow up to 3 or more-RNC (e.g., G x {s0, s5, s6}).
Similarly, {s0, s4}, {s1, s4}, {s2, s4} and {s3, s4} cannot
form a 2-RNC if ms = 4.

3.2 Get the (p+1)-RNCs from p-RNCs

For all 2-RNCs C = (O, T), we make 3-RNC by
examining the sample si such that l < i, where sl is the

last sample in sample set T. We can get 4-RNCs from
3-RNCs, 5-RNCs from 4-RNCs, and so on. In other
words, we take the iterative method [10] by doing
breadth first search to get (p+1)-RNCs from p-RNCs.

The examining process is composed of ranging and
queuing process. Details of these parts are described in
the following sub sections.

3.3 Ranging

The examining process first calculates tk
li between sl

and si for all the genes gk. Then genes in the gene set O
are clustered into two sets: set of positive values, OP
and set of negative values, ON according to the sign of
tk

li. If the sign of tk
li is positive, gk is included into OP,

else gk is included into ON. Keeping same signed ts in
separate sets makes negatively correlated genes to be
included in a bicluster.

First table of Figure 1 shows genes in OP and their
tk

li values. OP is sorted according to tk
li in ascending

order. Let q = (|OP| / 2) – 1. Then gq is gene that is
positioned in the middle of ordered OP. Second table
of Figure 1 shows ordered OP of first table, and g6 is
positioned middle of ordered OP.

Then we heuristically get 5 sub-gene sets OP0, OP1,
OP2, OP3 and OP4 from OP with Definition 1 being
satisfied. Each of sub-gene set OPi contains genes
whose t values are within rangei, where i = 0, 1, 2, 3, 4.
Each rangei are shown in Figure 1.

Once the ranges are derived, the sorted sequence of
gene OP is linearly examined once. During examining,
for each gk in OP, if |tk

li| ∈ rangei, then gk is clustered
into OPi. All those OPis except the ones whose size is
less than mg become the gene set for new (p+1)-RNC
whose new sample set is T = T U {si}.

Figure 1. Sub-gene sets and their ranges when δ = 2

133133133

Figure 2. Queuing strategies

From the second table of Figure 1, we can see that

the tqli = 1. When δ = 2, range0 = [1 x 2-3, 1 x 2-1] =
[0.125, 0.5]. Likewise, range1, range2, range3 and
range4 can be calculated as in Figure 1. Because OP0
is composed of gks whose tk

li is in range0, OP0 = {g8, g2,
g17}. OP1, OP2, OP3 and OP4 can be derived in a
similar way. These processes are illustrated in Figure 1.
We can apply the same process on ON. While
generating (p+1)-RNCs, if we cannot get any OPis or
ONis whose size is greater than or equal to minimum
number of genes mg, for all the p-RNCs and all the
samples si where si ∈ S – T, then there are no valid
(p+1)-RNC, and the entire process ends.

3.4 Queuing

Let the number of the (p-1)-RNC be r. For each (p-
1)-RNC, there are at most n samples to examine, and
for each examination, at most 10 p-RNCs are generated
(5 ranges from OP and ON). Thus there are O(nr) p-
RNCs. We cannot keep all these p-RNCs due to
limitation of memory, and examining all these p-RNCs
is exponentially time consuming process. However we
observe that 1) we are only interested in distinguished
p-RNCs whose gene set is bigger than others, and 2)
we only need to keep p-RNCs which have higher
possibility to grow up to p’-RNC where p’ > p.

To satisfy condition 1), we keep set of priority
queues whose priority measure is the size of the gene
set, |O|, to keep the p-RNCs. The p-RNCs in these
queues form the output biclusters. Figure 2 compares
two queuing strategies: single priority queue, and
multiple priority queues. Ours is implemented using
multiple priority queues. Each node in BFS tree of
Figure 2 denotes the name of RNC and the size of its
gene set, |O|.

Former strategy prunes the (p+1)-RNCs from p-
RNCs B and C, that means it does not guarantee

variety of genes. Thus we keep multiple priority
queues to guarantee the variety of the p-RNCs. Every
(p+1)-RNCs in each priority queues can be a result.

To satisfy condition 2), we need to keep another set
of priority queues to keep the p-RNCs for next (p+1)-
RNCs. The queuing strategy is same as the case above,
but we heuristically set the priority measure as |O| x (n
- last), where last is the index of last sample of T (for
example, when T = {s0, s2, s3}, last is 3). The
strongholds for the priority measure |O| x (n - last) are
followings: 1) it is generally true that p-RNC with
bigger gene set grows up to a (p+1)-RNC with bigger
gene set, and 2) as last gets bigger, the possibility that
the p-RNC grows up to larger-RNC gets smaller. For
example, suppose that S = {s0, s1, s2, s3, s4, s5} and
there are two 3-RNCs SB1 and SB2 whose T is {s0, s1,
s2} and {s0, s1, s3}, respectively. SB1 has more samples
(s3, s4 and s5) to examine than SB2 (s4 and s5), which
means SB1 can grow up to three 4-RNCs with T = {s0,
s1, s2, s3}, T = {s0, s1, s2, s4} and T = {s0, s1, s2, s5},
while SB2 can grow up to only two 4-RNCs with T =
{s0, s1, s3, s4} and T = {s0, s1, s3, s5}. Furthermore, SB1
can grow up to 6-RNC with T = {s0, s1, s2, s3, s4, s5},
but SB2 cannot grow up to 6-RNC. So we can say that,
as last gets bigger, the possibility of the p-RNC
growing gets smaller. Accordingly, priority queues
have p-RNCs which have bigger possibility to grow up
to larger-RNC. After we examine all the p-RNCs, we
can get two sets of (p+1)-RNCs, one is for output and
another is the candidates for next (p+1)-RNCs.

Let the size of each priority queue and the total
number of priority queues be qsize and qnum,
respectively. Both qsize and qnum can be input as a
user-specified parameter. qsize affects the diversity of
results. We internally set the qsize as 100, which is big
enough, since qsize is not directly proportional to the
degree of diversity. Let k = qnum x qsize, then k is the

134134134

total number of p-RNCs before eliminating duplicated
RNCs. Accordingly, bigger qnum leads to bigger k.
Generally, the bigger k leads to less pruning, thus
prevents local optima. However, experimental results
(Table 5) revealed that qnum does not affect the quality
of biclusters once the value is bigger than 100.

4. EXPERIMENTAL RESULTS

The experimental environment is Windows XP
operating system on AMD Athlon 64 X2 Dual,
2.81GHz, 1.93GB RAM machine. We used only real
microarray datasets to evaluate RN-Cluster which is
the Gasch [11] yeast dataset. The yeast dataset consists
of 2944 genes over 173 samples. In all experiments,
we used ms = 5, mg = 10, δ = 1.7, rt = 0.4 and qnum =
100 unless otherwise specified.

To show the quality of the RN-Cluster, we validated
the results through GO, using FuncAssociate [12]. We
compared GO validation result on OPSM, Bimax [6],
ISA [13] and δ-biclustering [2]. According to Prelic [6],
the proportion of biclusters enriched with significance
level α = 0.001% is about 88% in case of OPSM, when
the same real data was used. OPSM shows best GO
validation result among Bimax, ISA and δ-biclustering.
Meanwhile, the proportion of RN-clusters enriched
with significant level α = 0.001% is 100%. That means
every RN-Cluster is biologically meaningful.
To show more detailed result, we compared GO
validation results of our bicluster with those of OPSM
bicluster, which has approximately same number of
genes with ours. We used BicAT v2.22 [14] to execute
OPSM with iteration parameter = 10, on the same

environment. Totally 14 biclusters were generated by
OPSM, and we chose top 2 biclusters which show
good GO validation result among them. Then we also
chose biclusters with similar size of gene set from
resulting RN-Clusters. Table 3-a), b), c) and d) show
the top 5 p-values of biclusters from RN Cluster and
OPSM and Table 3-e) is for the legends for other tables.
We can see that p-values with same GO Attribute is
generally much lower in RN Cluster than OPSM.

That means the significance of association is much
bigger in the case of RN Cluster than OPSM. The
graphs of Figure 3 show the RN-Clusters used in Table
3-a). We can easily find the negative correlation and
the additive and multiplicative patterns in Figure 3.

Next we made experiments which guide the
selection of default values for δ, and qnum. Firstly we
made measurements of run-time while varying δ in
seconds. Bigger δ means accommodation of higher
level of noise. Figure 4 shows RN-Clustering’s time
complexity on varying δ. We can see that time
complexity does not increase exponentially as δ
increases and lowest p-

Figure 3. Gene curve graphs of 12-RNC

135135135

Table 4. lowest p-value of GO from randomly chosen 25-RNC on varying δ
δ 1.1 1.3 1.5 1.7 1.8 1.9 2.1 2.3 2.5 2.7

p-value 4.9e-25 1.7e-44 1.3e-76 4.3e-117 2.2e-110 1.2e-92 1.8e-99 2.5e-98 1.8e-101 1.4e-101

Table 5. lowest p-value of GO from randomly chosen 20-RNC on varying qnum
qnum 10 50 100 200 500 1000

p-value 1.4e-69 5.7e-83 1.1e-125 1.1e-125 1.1e-125 6.5e-87

Figure 4. Time complexity on varying δ

value of GO from randomly chosen 25-RNC does not
decrease substantially as δ increases as in Table 4.

Thus we can say that our algorithm is robust to the
noise. Also we can see that allowing high level of δ is
not necessary and 1.7 is sufficient as δ value. Secondly
we measured the p-values while increasing qnum p-
value does not decrease further, which means that
qnum doesn’t have to be bigger than 100. We
recommend that qnum < 200 if the number of samples
of microarray test dataset is less than 170.

5. CONCLUSION

RN-Clustering is robust to experimental noise by
unique ranging, tree forming and queuing algorithm.
These also guarantee the diversity of the results. RN-
Clusters are proven to have significant level of
functional association by GO validation.

The rapid increase in large-scale gene expression data
provides us for tremendous chances to integrate many
microarray datasets and identify a set of biclusters
which are functional modules. For future works, we’ll
extend and apply RN-Clustering to integrated
microarray datasets, and identify genetic regulation of
specific biological pathways under a variety of
conditions

6. REFERENCES

 [1] A. Ben-Dor, B. Chor, R. Karp, and Z. Yakhini,
"Discovering local structure in gene expression data: The
order–preserving submatrix problem," in Proc. 6th Int'l Conf.
Computacional Biology, 2002, pp. 49–57.

[2] Y. Cheng and G.M. Church, "Biclustering of Expression
Data," in Proc. 8th Int'l Conf. Intelligent Systems for
Molecular Biology, 2000, pp. 93-103.
[3] H. Wang, W. Wang, J. Yang and P. S. Yu, "Clustering by
Pattern Similarity in Large Data Sets," in Proc. ACM
SIGMOD Int'l. Conf. Management of Data, 2002, pp. 394-
405.
[4] L. Zhao and M. J. Zaki, "triCluster: An Effective
Algorithm for Mining Coherent Clusters in 3D Microarray
Data," in Proc. ACM SIGMOD Int'l. Conf. on Management
of data, 2005, pp. 694–705.
[5] X. Xu, Y. Lu, A. K. H. Tung and W. Wang, "Mining
Shifting-and-Scaling Co-Regulation Patterns on Gene
Expression Profiles," in Proc. 22nd IEEE Int’l. Conf. on Data
Engineering, 2006, pp. 89-99.
[6] A. Prelic, S. Bleuler, P. Zimmermann, A. Wille, P.
Bhlmann, W. Gruissem, L. Hennig, L. Thiele, and E. Zitzler,
"A systematic comparison and evaluation of biclustering
methods for gene expression data," Bioinformatics, vol. 22,
no. 9, pp. 1122-1129, 2006.
[7] J. Liu and W. Wang, "Op-cluster: Clustering by tendency
in high dimensional space," in Proc. IEEE Int’l. Conf. on
Data Mining, 2003, pp. 187–194.
[8] B. J. Gao, O. L. Griffith, M. Ester, and S. J. M. Jones,
"Discovering significant OPSM subspace clusters in massive
gene expression data," in Proc. 12th ACM SIGKDD 2006,
pp. 922-928.
[9] Y. Zhao, G. Wang, Y. Yin and G. Yu, "Mining Positive
and Negative Co-regulation Patterns from Microarray Data,"
in Proc. 6th IEEE Symposium on BioInformatics and
BioEngineering, 2006, pp. 86~93.
[10] L. R. Bahl, P. S. Gopalakrishnan and R. L. Mercer,
“Search Issues in Large Vocabulary Speech Recognition,” in
Proc. 1993 IEEE Workshop on Automatic Speech
Recognition, Snowbird, UT, 1993.
[11] A. P. Gasch, P. T. Spellman, C. M. Kao, O. Carmel-
Harel, M. B. Eisen, G. Storz, D. Botstein and P. O. Brown,
“Genomic expression programs in the response of yeast cells
to environmental changes,” Molecular Biology of the Cell,
vol. 11, pp. 4241–57, 2000.
[12] G. F. Berriz, O. D. King, B. Bryant, C. Sander and F. P.
Roth, "Characterizing gene sets with FuncAssociate,"
Bioinformatics, vol. 19, num. 18, pp. 2502-2504, 2003.
[13] J. Ihmels, S. Bergmann and N. Barkai, “Defining
transcription modules using large-scale gene expression
data,” Bioinformatics, vol. 20, no. 13, pp. 1993–2003, 2004.
[14] S. Barkow, S. Bleuler, A. Prelic, P. Zimmermann and E.
Zitzler, “BicAT: a biclustering analysis toolbox,”
Bioinformatics, vol. 22, no. 10, pp. 1282–1283, 2006

136136136

