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Abstract 
 

A bicluster is a subset of genes that show similar 
behavior within a subset of conditions. Biclustering 
algorithm is a useful tool to uncover groups of genes 
involved in the same cellular process and groups of 
conditions which take place in this process. We are 
proposing a polynomial time algorithm to identify 
functionally highly correlated biclusters. Our 
algorithm identifies 1) the gene set that follows 
additive, multiplicative, and combined patterns 
simultaneously that allow high level of noise, 2) the 
multiple, possibly overlapped, and diverse gene sets, 3) 
biclusters with negatively correlated as well as 
positively correlated gene set simultaneously, and 4) 
gene sets whose functional association is strongly high. 
We validated the level of functional association of our 
method, and compared with current methods using 
GO. 
 
1. Introduction 
 

Not all the genes in microarray dataset participate in 
a particular cellular process, and not all samples can be 
observed in a particular cellular process. We can 
expect subsets of genes to be co-regulated under 
certain experimental conditions, but to behave almost 
independently under other conditions [1]. Finding the 
set of co-regulated genes can lead to identify the 
functionality of the group of genes and eventually find 
the genetic pathways. Cheng [2] named the data 
mining technique that finds a submatrix of coherent 
gene set and sample set in a microarray as biclustering.  

Many biclustering algorithms have been introduced, 
and biclustering is proven to be a NP-hard problem [2], 
so all these algorithms used heuristic methods or 
probabilistic approximation. Accordingly strengths and 

weaknesses of each algorithm are various and the 
patterns that each biclustering algorithm identified are  
also various. Biclustering algorithms could be divided 
into two groups largely by the patterns they find.  

 Algorithms that find additive or multiplicative 
patterns: 
δ-biclustering [2] uses mean squared residue of a 

submatrix to find biclusters. As a result, it finds 
additive or multiplicative co-regulation patterns. One 
weakness of δ-biclustering is that it allows only a small 
degree of noise. Thus it can identify strict patterns 
only. Also it can easily miss overlapping clusters due 
to the random value substitutions once a bicluster is 
identified. 

p-Cluster [3] first scans the dataset to find all 
column-pair and row-pair maximal clusters called 
MDS. Then it does the pruning in turn using the row-
pair MDS and the column-pair MDS. It then mines the 
final clusters based on a prefix tree. However, p-
Cluster is not robust to noise, either. 

Tri-Cluster [4] is the first algorithm that mines 3 
dimensional microarray dataset. It makes a DFS(Depth 
First Search) tree whose node is the genes which show 
same range of fluctuation within user specified 
threshold ε. If ε is too big, DFS tree could grow too 
deep to complete the mining. However, Tri-Cluster 
with small ε does not allow high degree of noise. 
Moreover, its time complexity is exponential to the 
number of samples. 

reg-Cluster [5] mines additive and multiplicative 
co-regulation patterns. It defines dij as a difference of 
the gene expression value between conditions ci and cj. 
Then it finds the gene set whose ratio of d01 and dij is 
within ε. Although the idea of mining additive and 
multiplicative patterns together is novel, it has a few 
problems. First, finding a proper ε is very difficult job. 
If ε is too big, the gene set in a bicluster would have 
many false positive genes. And if ε is too small, the 
gene set in a bicluster would have many false negative 
genes. Second, it constructs a DFS tree like Tri-
Cluster. Thus it has same problems with Tri-Cluster. 
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The number of nodes of DFS tree becomes 
exponential as the level grows. Therefore, the 
algorithms that construct DFS tree have common 
problem that the number of resulting biclusters are 
extremely many. That is because all the biclusters 
which are slightly different are accounted into result. It 
is a difficult problem to examine all these biclusters 
and to choose the one among the similar biclusters. 
The noise level that the previously mentioned 
algorithms allow is not enough to find all the 
meaningful patterns. Thus we could say that they 
commonly find strictly additive or multiplicative 
patterns. 

 Algorithms that find pattern by keeping ordered 
sequence: 
OPSM [1] defines a cluster as a submatrix of the 

original microarray matrix after performing column 
permutation separately for each row, whose gene 
expression values are in a non-decreasing pattern. 
Although OPSM shows good GO validation result [6], 
it is problematic that OPSM can find only one bicluster 
at a time. It could miss many meaningful biclusters 
hidden in the microarray data. OP-Cluster [7] and 
KiWi [8] use different algorithm with OPSM, but 
basically use same definition of OPSM. Commonly, 
OPSM based algorithms have possibility that the 
biologically significant patterns which do not preserve 
the order could be missed [9].  

In this paper, we propose a new model for biclusters 
with functionally highly correlated gene expression 
data called RN-cluster. 1) RN-cluster identifies the 
gene set that follows additive, multiplicative, and 
combined patterns within user specified threshold 
simultaneously. Combined pattern of additive and 
multiplicative shape allows highly flexible patterns 
with specified level of noise tolerance and allowing 
high level of noise does not require exponential time or 
space complexity in RN-cluster, which means that RN-
Cluster is robust to experimental noise. 2) RN-cluster 
identifies the multiple, possibly overlapped gene sets 
while guaranteeing gene-diversity in a bicluster by 
complying with user specified similarity threshold. 3) 
RN-cluster identifies biclusters with negatively 
correlated as well as positively correlated gene set 
simultaneously. 4) RN-cluster identifies biclusters 
whose functional association is strongly high. This 
functional association is validated using GO database. 
 
2. PRELIMINARIES 
 

This section describes the notations and preliminary 
concepts before we detail the algorithm. 

 

2.1 Notations 
G A set of genes 
S A set of samples 

(O, T) A submatrix of the data set, where O ⊆ G, T ⊆ S 
g0, g1, … Genes in O 
s0, s1, … Samples in T 

cij Expression value of gene gi on sample sj 
dk

ab ckb- cka,  difference of  expression values of sample 
sa  and  sample sb on gene gk 

ti
cd di

ab/di
cd, ratio of gene gi, where sa and sb are the first 

and second samples in RN cluster, respectively 
δ User-specified maximum ratio threshold ( > 1) 

mg User-specified minimum # of genes of a RN cluster 
ms User-specified minimum # of samples of a RN 

cluster 
 

2.2 Preliminary concepts 
Let O = {g0, g1, … , gm-1} and T = {s0, s1, … , sn-1}, 

then cij would be the expression level of gene gi in 
sample sj. Let C be a m x n submatrix (O, T) of the 
dataset (G, S), then we can write C = (O, T) = {cij}, i � 
[0, m-1] and j � [0, n-1]. 

 
Definition 1 (RN-cluster). Let C = (O, T) be a 

bicluster, where gi, gj, gk � O and T = {sa, sb, … , sc, sd, 
…}. C is a RN -cluster iff C satisfies the following 
properties: 

1.  di
ab ≠ 0, dj

ab ≠ 0, di
cd ≠ 0 and dj

cd ≠ 0 
2.  sign(ticd) = sign(tj

cd), where sign(x) returns -1 if 
x is negative and +1 if x is positive for all a > 1 

3.  |tj
cd| / δ ≤ | ticd| ≤ |tk

cd| x δ, where |tj
cd| and |tk

cd| 
are maximum and minimum |thcd| values for gh 
� O, respectively 

4.  |O| ≥ mg ≥ 2 and |T| ≥ ms ≥ 3 
 

Definition 2 (p-RNC). When RN-Cluster C = (O, T) 
and |T| = p, then we refer to C as p-RNC. p refers to the 
number of samples involved in the bicluster. 

 
For example, suppose there are 10 x 6 microarray 

dataset (G, S) as shown in Table 1. Let 2-RNC be G x 
{s0, s2} submatrix, ms = 3, mg = 3 and δ = 2. If we 
examine sample s3, then T={s0, s2, s3}. The dk

02 and 
dk

23 for gene gk are shown in table 2. 
 

Table 1. 10 x 6 microarray dataset 
gene\sample s0 s1 s2 s3 s4 s5 

g0 0.15 -0.07 -0.25 -0.3 -1.12 -0.67 
g1 0.21 0.03 0.18 -0.27 -0.32 0.62 
g2 -0.03 -0.07 0.28 0.32 -0.27 -0.36 
g3 -0.25 0.58 0.77 0.28 0.32 0.65 
g4 0.11 0.04 0.75 0.82 0.21 -0.2 
g5 0.24 0.31 0.95 0.12 0.18 0.69 
g6 -0.3 0.22 0.02 -0.64 0.06 -0.04 
g7 -0.15 -0.25 0.18 0.06 -0.15 -0.17 
g8 0 -0.74 -0.38 0.87 -0.34 0.12 
g9 -0.15 0.2 0.31 0.15 0.04 -0.22 
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Table 2. Difference values and ratio of difference values for gene set O 
 g0 g1 g2 g3 g4 g5 g6 g7 g8 g9 

dk
02 -0.4 -0.03 0.31 1.02 0.64 0.71 0.32 0.33 -0.38 0.46 

dk
23 -0.05 -0.45 0.04 -0.49 0.07 -0.83 -0.66 -0.12 1.25 -0.16 

| tk
23| 8 0.067 7.75 2.08 9.14 0.86 0.48 2.75 0.30 2.88 

We can see that bicluster B1 with gene set O = {g0, g2, 
g4} and sample set T = {s0, s2, s3} satisfies all the 
properties: 1) dk

02 and dk
23 for k = 0, 2, 4 are not zero, 

2) dk
02 and dk

23 for k = 0, 2, 4 have same sign, 3) the 
values max(|tk

23|) = 9.14 when k = 4, min(|tk
23|) = 7.75 

when k = 2 and | tk
23| = 8 when k = 0. Thus, 9.14 / 2(= 

4.58) < 8 < 7.75 x 2(= 15.5), 4) |O| = 3 ≥ 3 and |T| = 3 
≥ 3. Thus B1 can be said to be a 3-RNC. Similarly, we 
can see that bicluster B2 with gene set O = {g3, g7, g9} 
and B3 with gene set O = {g5, g6, g8} satisfies all the 
properties, thus B2 and B3 can be said to be a 3-RNC. 

 
3. ALGORITHM 
 

RN-Cluster mines a set of genes that behave 
similarly through a set of samples. RN-Cluster has two 
main steps: 1) get the initial 2-RNC set whose samples 
are all possible sample pairs, 2) for each p-RNC, get 
the (p+1)-RNC. We describe the details of each step. 

 
3.1 Get the initial 2-RNC set 

The set of samples {(si, sj)} where i < j and the set of 
genes {g0, g1, … , gm-1} form a 2-RNC. The number of 
all the 2-RNCs is n(n-1) / 2, which are all possible 
sample pairs. For example, in Table 1, possible sample 
sets of 2-RNC are {s0, s1}, {s0, s2}, …, {s0, s3}. Note 
that if ms = 3, then {s0, s5}, {s1, s5}, {s2, s5}, {s3, s5} 
and {s4, s5} cannot form a 2-RNC, because it cannot 
grow up to 3 or more-RNC (e.g., G x {s0, s5, s6}). 
Similarly, {s0, s4}, {s1, s4}, {s2, s4} and {s3, s4} cannot 
form a 2-RNC if ms = 4. 
 
3.2 Get the (p+1)-RNCs from p-RNCs 

For all 2-RNCs C = (O, T), we make 3-RNC by 
examining the sample si such that l < i, where sl is the 

last sample in sample set T. We can get 4-RNCs from 
3-RNCs, 5-RNCs from 4-RNCs, and so on. In other 
words, we take the iterative method [10] by doing 
breadth first search to get (p+1)-RNCs from p-RNCs.  

The examining process is composed of ranging and 
queuing process. Details of these parts are described in 
the following sub sections. 

 
3.3 Ranging 

The examining process first calculates tk
li between sl 

and si for all the genes gk. Then genes in the gene set O 
are clustered into two sets: set of positive values, OP 
and set of negative values, ON according to the sign of 
tk

li. If the sign of tk
li is positive, gk is included into OP, 

else gk is included into ON. Keeping same signed ts in 
separate sets makes negatively correlated genes to be 
included in a bicluster. 

First table of Figure 1 shows genes in OP and their 
tk

li values. OP is sorted according to tk
li in ascending 

order. Let q = (|OP| / 2) – 1. Then gq is gene that is 
positioned in the middle of ordered OP. Second table 
of Figure 1 shows ordered OP of first table, and g6 is 
positioned middle of ordered OP. 

Then we heuristically get 5 sub-gene sets OP0, OP1, 
OP2, OP3 and OP4 from OP with Definition 1 being 
satisfied. Each of sub-gene set OPi contains genes 
whose t values are within rangei, where i = 0, 1, 2, 3, 4. 
Each rangei are shown in Figure 1. 

Once the ranges are derived, the sorted sequence of 
gene OP is linearly examined once. During examining, 
for each gk in OP, if |tk

li| ∈ rangei, then gk is clustered 
into OPi. All those OPis except the ones whose size is 
less than mg become the gene set for new (p+1)-RNC 
whose new sample set is T = T U {si}. 

 

 
Figure 1. Sub-gene sets and their ranges when δ = 2 
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Figure 2. Queuing strategies 

 
From the second table of Figure 1, we can see that 

the tqli = 1. When δ = 2, range0 = [1 x 2-3, 1 x 2-1] = 
[0.125, 0.5]. Likewise, range1, range2, range3 and 
range4 can be calculated as in Figure 1.  Because OP0 
is composed of gks whose tk

li is in range0, OP0 = {g8, g2, 
g17}. OP1, OP2, OP3 and OP4 can be derived in a 
similar way. These processes are illustrated in Figure 1. 
We can apply the same process on ON. While 
generating (p+1)-RNCs, if we cannot get any OPis or 
ONis whose size is greater than or equal to minimum 
number of genes mg, for all the p-RNCs and all the 
samples si where si ∈ S – T, then there are no valid 
(p+1)-RNC, and the entire process ends. 

 
3.4 Queuing 

Let the number of the (p-1)-RNC be r. For each (p-
1)-RNC, there are at most n samples to examine, and 
for each examination, at most 10 p-RNCs are generated 
(5 ranges from OP and ON). Thus there are O(nr) p-
RNCs. We cannot keep all these p-RNCs due to 
limitation of memory, and examining all these p-RNCs 
is exponentially time consuming process. However we 
observe that 1) we are only interested in distinguished 
p-RNCs whose gene set is bigger than others, and 2) 
we only need to keep p-RNCs which have higher 
possibility to grow up to p’-RNC where p’ > p. 

To satisfy condition 1), we keep set of priority 
queues whose priority measure is the size of the gene 
set, |O|, to keep the p-RNCs. The p-RNCs in these 
queues form the output biclusters. Figure 2 compares 
two queuing strategies: single priority queue, and 
multiple priority queues. Ours is implemented using 
multiple priority queues. Each node in BFS tree of 
Figure 2 denotes the name of RNC and the size of its 
gene set, |O|.  

Former strategy prunes the (p+1)-RNCs from p-
RNCs B and C, that means it does not guarantee 

variety of genes. Thus we keep multiple priority 
queues to guarantee the variety of the p-RNCs. Every 
(p+1)-RNCs in each priority queues can be a result. 

To satisfy condition 2), we need to keep another set 
of priority queues to keep the p-RNCs for next (p+1)-
RNCs. The queuing strategy is same as the case above, 
but we heuristically set the priority measure as |O| x (n 
- last), where last is the index of last sample of T (for 
example, when T = {s0, s2, s3}, last is 3). The 
strongholds for the priority measure |O| x (n - last) are 
followings: 1) it is generally true that p-RNC with 
bigger gene set grows up to a (p+1)-RNC with bigger 
gene set, and 2) as last gets bigger, the possibility that 
the p-RNC grows up to larger-RNC gets smaller. For 
example, suppose that S = {s0, s1, s2, s3, s4, s5} and 
there are two 3-RNCs SB1 and SB2 whose T is {s0, s1, 
s2} and {s0, s1, s3}, respectively. SB1 has more samples 
(s3, s4 and s5) to examine than SB2 (s4 and s5), which 
means SB1 can grow up to three 4-RNCs with T = {s0, 
s1, s2, s3}, T = {s0, s1, s2, s4} and T = {s0, s1, s2, s5}, 
while SB2 can grow up to only two 4-RNCs with T = 
{s0, s1, s3, s4} and T = {s0, s1, s3, s5}. Furthermore, SB1 
can grow up to 6-RNC with T = {s0, s1, s2, s3, s4, s5}, 
but SB2 cannot grow up to 6-RNC. So we can say that, 
as last gets bigger, the possibility of the p-RNC 
growing gets smaller. Accordingly, priority queues 
have p-RNCs which have bigger possibility to grow up 
to larger-RNC. After we examine all the p-RNCs, we 
can get two sets of (p+1)-RNCs, one is for output and 
another is the candidates for next (p+1)-RNCs. 

Let the size of each priority queue and the total 
number of priority queues be qsize and qnum, 
respectively. Both qsize and qnum can be input as a 
user-specified parameter. qsize affects the diversity of 
results.  We internally set the qsize as 100, which is big 
enough, since qsize is not directly proportional to the 
degree of diversity. Let k = qnum x qsize, then k is the 
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total number of p-RNCs before eliminating duplicated 
RNCs. Accordingly, bigger qnum leads to bigger k. 
Generally, the bigger k leads to less pruning, thus 
prevents local optima. However, experimental results 
(Table 5) revealed that qnum does not affect the quality 
of biclusters once the value is bigger than 100. 
 
4. EXPERIMENTAL RESULTS 
 

The experimental environment is Windows XP 
operating system on AMD Athlon 64 X2 Dual, 
2.81GHz, 1.93GB RAM machine. We used only real 
microarray datasets to evaluate RN-Cluster which is 
the Gasch [11] yeast dataset. The yeast dataset consists 
of 2944 genes over 173 samples. In all experiments, 
we used ms = 5, mg = 10, δ = 1.7, rt = 0.4 and qnum = 
100 unless otherwise specified. 

To show the quality of the RN-Cluster, we validated 
the results through GO, using FuncAssociate [12]. We 
compared GO validation result on OPSM, Bimax [6], 
ISA [13] and δ-biclustering [2]. According to Prelic [6], 
the proportion of biclusters enriched with significance 
level α = 0.001% is about 88% in case of OPSM, when 
the same real data was used. OPSM shows best GO 
validation result among Bimax, ISA and δ-biclustering. 
Meanwhile, the proportion of RN-clusters enriched 
with significant level α = 0.001% is 100%. That means 
every RN-Cluster is biologically meaningful.  
To show more detailed result, we compared GO 
validation results of our bicluster with those of OPSM 
bicluster, which has approximately same number of 
genes with ours. We used BicAT v2.22 [14] to execute 
OPSM with iteration parameter = 10, on the same 

environment. Totally 14 biclusters were generated by 
OPSM, and we chose top 2 biclusters which show 
good GO validation result among them. Then we also 
chose biclusters with similar size of gene set from 
resulting RN-Clusters. Table 3-a), b), c) and d) show 
the top 5 p-values of biclusters from RN Cluster and 
OPSM and Table 3-e) is for the legends for other tables. 
We can see that p-values with same GO Attribute is 
generally much lower in RN Cluster than OPSM. 

That means the significance of association is much 
bigger in the case of RN Cluster than OPSM. The 
graphs of Figure 3 show the RN-Clusters used in Table 
3-a). We can easily find the negative correlation and 
the additive and multiplicative patterns in Figure 3. 

Next we made experiments which guide the 
selection of default values for δ, and qnum. Firstly we 
made measurements of run-time while varying δ in 
seconds. Bigger δ means accommodation of higher 
level of noise. Figure 4 shows RN-Clustering’s time 
complexity on varying δ. We can see that time 
complexity does not increase exponentially as δ 
increases and lowest p- 

 

  
Figure 3. Gene curve graphs of 12-RNC 
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Table 4. lowest p-value of GO from randomly chosen 25-RNC on varying δ 
δ 1.1 1.3 1.5 1.7 1.8 1.9 2.1 2.3 2.5 2.7 

p-value 4.9e-25 1.7e-44 1.3e-76 4.3e-117 2.2e-110 1.2e-92 1.8e-99 2.5e-98 1.8e-101 1.4e-101 
 

Table 5. lowest p-value of GO from randomly chosen 20-RNC on varying qnum 
qnum 10 50 100 200 500 1000 

p-value 1.4e-69 5.7e-83 1.1e-125 1.1e-125 1.1e-125 6.5e-87 
 

 
Figure 4. Time complexity on varying δ 

 
value of GO from randomly chosen 25-RNC does not 
decrease substantially as δ increases as in Table 4. 

Thus we can say that our algorithm is robust to the 
noise. Also we can see that allowing high level of δ is 
not necessary and 1.7 is sufficient as δ value. Secondly 
we measured the p-values while increasing qnum p-
value does not decrease further, which means that 
qnum doesn’t have to be bigger than 100. We 
recommend that qnum < 200 if the number of samples 
of microarray test dataset is less than 170. 

 
5. CONCLUSION 
 

RN-Clustering is robust to experimental noise by 
unique ranging, tree forming and queuing algorithm. 
These also guarantee the diversity of the results. RN-
Clusters are proven to have significant level of 
functional association by GO validation. 

The rapid increase in large-scale gene expression data 
provides us for tremendous chances to integrate many 
microarray datasets and identify a set of biclusters 
which are functional modules. For future works, we’ll 
extend and apply RN-Clustering to integrated 
microarray datasets, and identify genetic regulation of 
specific biological pathways under a variety of 
conditions 
 
6. REFERENCES 
 
 [1] A. Ben-Dor, B. Chor, R. Karp, and Z. Yakhini, 
"Discovering local structure in gene expression data: The 
order–preserving submatrix problem," in Proc. 6th Int'l Conf. 
Computacional Biology, 2002, pp. 49–57. 

[2] Y. Cheng and G.M. Church, "Biclustering of Expression 
Data," in Proc. 8th Int'l Conf. Intelligent Systems for 
Molecular Biology, 2000, pp. 93-103. 
[3] H. Wang, W. Wang, J. Yang and P. S. Yu, "Clustering by 
Pattern Similarity in Large Data Sets," in Proc. ACM 
SIGMOD Int'l. Conf. Management of Data, 2002, pp. 394-
405. 
[4] L. Zhao and M. J. Zaki, "triCluster: An Effective 
Algorithm for Mining Coherent Clusters in 3D Microarray 
Data," in Proc. ACM SIGMOD Int'l. Conf. on Management 
of data, 2005, pp. 694–705. 
[5] X. Xu, Y. Lu, A. K. H. Tung and W. Wang, "Mining 
Shifting-and-Scaling Co-Regulation Patterns on Gene 
Expression Profiles," in Proc. 22nd IEEE Int’l. Conf. on Data 
Engineering, 2006, pp. 89-99. 
[6] A. Prelic, S. Bleuler, P. Zimmermann, A. Wille, P. 
Bhlmann, W. Gruissem, L. Hennig, L. Thiele, and E. Zitzler, 
"A systematic comparison and evaluation of biclustering 
methods for gene expression data," Bioinformatics, vol. 22, 
no. 9, pp. 1122-1129, 2006. 
[7] J. Liu and W. Wang, "Op-cluster: Clustering by tendency 
in high dimensional space," in Proc. IEEE Int’l. Conf. on 
Data Mining, 2003, pp. 187–194. 
[8] B. J. Gao, O. L. Griffith, M. Ester, and S. J. M. Jones, 
"Discovering significant OPSM subspace clusters in massive 
gene expression data," in Proc. 12th ACM SIGKDD 2006, 
pp. 922-928. 
[9] Y. Zhao, G. Wang, Y. Yin and G. Yu, "Mining Positive 
and Negative Co-regulation Patterns from Microarray Data," 
in Proc. 6th IEEE Symposium on BioInformatics and 
BioEngineering, 2006, pp. 86~93. 
[10] L. R. Bahl, P. S. Gopalakrishnan and R. L. Mercer, 
“Search Issues in Large Vocabulary Speech Recognition,” in 
Proc. 1993 IEEE Workshop on Automatic Speech 
Recognition, Snowbird, UT, 1993. 
[11] A. P. Gasch, P. T. Spellman, C. M. Kao, O. Carmel-
Harel, M. B. Eisen, G. Storz, D. Botstein and P. O. Brown,  
“Genomic expression programs in the response of yeast cells 
to environmental changes,” Molecular Biology of the Cell, 
vol. 11, pp. 4241–57, 2000. 
[12] G. F. Berriz, O. D. King, B. Bryant, C. Sander and F. P. 
Roth, "Characterizing gene sets with FuncAssociate," 
Bioinformatics, vol. 19, num. 18, pp. 2502-2504, 2003. 
[13] J. Ihmels, S. Bergmann and N. Barkai, “Defining 
transcription modules using large-scale gene expression 
data,” Bioinformatics, vol. 20, no. 13, pp. 1993–2003, 2004. 
[14] S. Barkow, S. Bleuler, A. Prelic, P. Zimmermann and E. 
Zitzler, “BicAT: a biclustering analysis toolbox,” 
Bioinformatics, vol. 22, no. 10, pp. 1282–1283, 2006 

136136136


