
Optimizing Hash Partitioning for Solid State Drives

Mincheol Shin
Dept. of Computer Science

Yonsei University
50 Yonsei-ro, Seodaemun-gu,

Seoul, Korea
smanioso@yonsei.ac.kr

Hongchan Roh
Dept. of Computer Science

Yonsei University
50 Yonsei-ro, Seodaemun-gu,

Seoul, Korea
fallsmal@cs.yonsei.ac.kr

Wonmook Jung
LG Electronics

19, Yangjae-daero 11-gil,
Seocho-gu, Seoul, Repuiblic

of Korea
wonmook.jung@lge.com

Sanghyun Park
∗

Dept. of Computer Science
Yonsei University

50 Yonsei-ro, Seodaemun-gu,
Seoul, Korea

sanghyun@cs.yonsei.ac.kr

ABSTRACT
The use of flashSSDs has increased rapidly in a wide range of
areas due to their superior energy efficiency, shorter access
time, and higher bandwidth when compared to HDDs. The
internal parallelism created by multiple flash memory pack-
ages embedded in a flashSSDs, is one of the unique features
of flashSSDs. Many new DBMS technologies have been de-
veloped for flashSSDs, but query processing for flashSSDs
have drawn less attention than other DBMS technologies.
Hash partitioning is popularly used in query processing al-
gorithms to materialize their intermediate results in an effi-
cient manner. In this paper, we propose a novel hash par-
titioning algorithm that exploits the internal parallelism of
flashSSDs. The devised hash partitioning method outper-
forms the traditional hash partitioning technique regardless
of the amount of available main memory independently from
the buffer management strategies (blocked I/O vs page sized
I/O). We implemented our method based on the source code
of the PostgreSQL storage manager. PostgreSQL relation
files created by the TPC-H workload were employed in the
experiments. Our method was found to be up to 3.55 times
faster than the traditional method with blocked I/O, and
2.36 times faster than the traditional method with page-
sized I/O.

CCS Concepts
•Information systems → Query operators;

∗Corresponding author. Tel.: +82 2 2123 5714; fax: +82 2
365 2579; E-mail address: sanghyun@cs.yonsei.ac.kr.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

SAC’16, April 4-8, 2016, Pisa, Italy
c© 2016 ACM. ISBN 978-1-4503-3739-7/16/04. . . $15.00

DOI: http://dx.doi.org/10.1145/2851613.2851663

Figure 1: FlashSSD architecture [18]

Keywords
Query Execution; Hash Join; Hash Partitioning; Flash Stor-
age Devices; Internal Parallelism of flashSSDs

1. INTRODUCTION
In the last decade, flashSSDs have been rapidly adopted
in a wide range of areas because of their superior features
when compared to HDDs. Personal users have employed
flashSSDs in their laptop and desktop computers in order
to boost operating system and speed up access to frequently
used applications. Data centers have also adopted flashSSDs
to improve energy efficiency and performance. Many DBMS
technologies have been developed for flashSSDs. While ma-
jority of previous studies have focused on the buffer and
index management of DBMSs on flashSSDs, query process-
ing algorithms for flashSSDs have drawn less attention from
researchers.

1.1 The Internal Parallelism of FlashSSDs
A typical flashSSD architecture is shown in Figure 1. A
flashSSD includes a CPU, a host interface (host I/F), a
RAM buffer, Error-Correcting Code(ECC) modules, multi-
ple data transfer channels and multiple flash memory pack-

ages (chips). Multiple flash memory packages in a flashSSD
are assembled into groups each of which is connected to a
channel.

The multiple flash memory packages embedded in a flashSSD
create internal parallelism. [18] emphasized the importance
of exploiting internal parallelism. Using the internal paral-
lelism of flashSSDs, DBMS applications can utilize higher
bandwidths of flashSSDs. As mentioned in [3, 9, 18], re-
questing a number of I/Os (outstanding I/Os) at the same
time regardless of the access pattern (random or sequen-
tial) is an efficient way to exploit the internal parallelism of
flashSSDs. Our benchmark results in Section 2.4 support
this notion. Large granularity and a high number of out-
standing I/Os guarantee that DBMSs utilize nearly the max-
imum bandwidth of flashSSDs. The bandwidth gap between
the case when internal parallelism was utilized at maximum
and the case when it was not is significant. In our bench-
mark results, exploiting internal parallelism increased the
flashSSD bandwidth by a factor of up to 10.

Psync I/O (Parallel Synchronous I/O): A new I/O
request interface, Psync I/O, was proposed for exploiting
the internal parallelism of flashSSDs [18]. Psync I/O allows
applications to request outstanding random I/Os all at once.
Psync I/O was implemented using libaio API in Linux.

1.2 Hash Partitioning for FlashSSDs
In this paper, we focus on optimizing the hash partition-
ing algorithm for flashSSDs. Hash partitioning is a popular
operation in query processing. Many query processing al-
gorithms, including hash join algorithms and aggregation
operations, use hash partitioning to efficiently materialize
intermediate results. Moreover, distributed processing sys-
tems like Hadoop also uses a hash partitioning algorithm
for the same reason. In MapReduce [5], a mapper partitions
their intermediate results and a reducer brings these par-
titions for reduce function. Tajo [4] which is a distributed
data warehouse also uses a hash partitioning algorithm.

The process of the conventional hash partitioning algorithm
[2] may be described as follows. First, the allocated main
memory space is divided into at least one input buffer and
s output buffers where s is the number of partitions. Next,
the input relation is read so as to be as large as the input
buffer. For each tuple in the input buffer, the hash value of
the tuples key is calculated. The tuple is moved to the out-
put buffer for the partition corresponding to the hash value.
Before moving the tuple, the method verifies whether or not
the output buffer has enough space to store the tuple. If suf-
ficient space is not available, the output buffer is written to
the secondary storage and the tuple is subsequently moved
to the output buffer. These processes are iterated until all
tuples in the input relation are deployed to the correspond-
ing partitions.

[12] proposed ParaHash which is a hash partitioning al-
gorithm exploiting the internal parallelism of FlashSSDs.
However, ParaHash uses many threads for each hash join
operation (20 threads in the paper). If several queries are
executed simultaneously, the high costs of context switching
is inevitable. For this reason, ParaHash cannot be an option
for commercial database systems.

1.3 Problems and Proposed Method
Previous studies regarding query processing have often used
the convenient assumptions that a single query processing
operation can utilize a large main memory space and that
the buffer manager can fully support the blocked I/O method
[6]. In practice, this seems somewhat idealistic. It is hard
for DBMSs to allocate a large amount of main memory for
every single query processing operation in a real environ-
ment. The memory space for query processing is allocated
per session, but most DBMSs use the buffer pool as a global
resource. In the case of running complex queries, each query
processing operation in the complex query competes with
other operations for more query processing memory. In ad-
dition, DBMSs can be connected by many users, which re-
duces memory space for each query processing operation or
shrinks global buffer pool. A large amount of input data for
hash partitioning is also an issue that must be addressed.
We will cover this topic in more detail using examples of
popular DBMSs in Section 2.2. Furthermore, some DBMSs
do not fully support blocked I/O. For a detailed explanation
of blocked I/O and page-sized I/O, the reader is referred to
Section 2.1.

In order to develop a more practical hash partitioning al-
gorithm for flashSSDs, we considered the performance of a
traditional hash partitioning algorithm when both a large
and small amount of memory situation is available. When a
very large amount of main memory is available and blocked
I/O method can be employed, the internal parallelism of
flashSSDs can be utilized even with the original hash par-
titioning method. The output buffer of the hash partition-
ing method can be large enough to request I/Os with large
I/O sizes which can guarantee the maximum bandwidth of
flashSSDs. Based on our benchmark results in Section 2.4,
if the I/O size is greater than 1MB, the outstanding I/O
level (i.e. the number of I/Os requested at once) does not
matter. In other words, even with a single I/O request and a
1MB I/O size, DBMSs can utilize the maximum bandwidth
of flashSSDs.

However, we cannot secure a large main memory space for
query processing for a DBMS session and thus, the origi-
nal hash partitioning algorithm is unable to exploit internal
parallelism of flashSSDs. Even if we have a large amount
of main memory available for query processing, the origi-
nal algorithm cannot exploit internal parallelism unless the
DBMS fully supports the blocked I/O method.

In this paper, we propose an efficient hash partitioning algo-
rithm, called n-way hash partitioning (N-Hash). Regardless
of the main memory size or the support for blocked I/O, N-
Hash can exploit internal parallelism by generating a high
number of outstanding I/Os. Consequently, it outperforms
the traditional hash partitioning method. N-Hash replaces
a traditional output buffer structure with a circular-queue-
like output buffer, denoted simply as a circular buffer. Each
circular buffer structure is divided into 8KB sub-structures
called sub-buffers. Based on the circular buffer, N-Hash gen-
erates a number of I/Os by flushing as many sub-buffers
as possible. The created outstanding I/Os are delivered to
flashSSDs via the Psync I/O interface [18].

We implemented N-Hash based on the source code of the

PostgreSQL storage manager. The PostgreSQL relation files
were created by the TPC-H benchmark [20], which is a well
known online analytical processing(OLAP) workload, were
used in the experiments. From the results, N-Hash was
found to be up to 3 times faster than the traditional hash
partitioning algorithm with blocked I/O. Based on the page
sized I/O, N-Hash was up to 2 times faster than the tradi-
tional hash partitioning algorithm.

The contributions of this paper are summarized as follows:

• N-Hash is the most efficient hash partitioning algo-
rithm designed for flashSSDs. Original hash partition-
ing algorithm cannot exploit the internal paralleism
of flashSSDs. ParaHash [12] can utilize the high I/O
bandwidth of flash SSDs, but ParaHash consumes a lot
of CPU resources because of many threads for the hash
partitioning. ParaHash has trade-off between perfor-
mance of hash partitioning algorithm and overall sys-
tem. N-Hash overcomes these problems of traditional
hash partitioning algorithms.

• N-Hash outperforms the traditional hash partitioning
algorithm, regardless of the memory size or the support
for blocked I/O. Since N-Hash shows outstanding per-
formance even when the available memory size is very
small, it can help the DBMS memory-tuner to man-
age main memory in a flexible manner. Consequently,
DBMSs can allocate a larger amount of memory to
more important modules (e.g. the buffer pool). In the
same vein, it guarantees the performance of DBMSs
in more stressful situations where the amount of input
data is large and there are many user connections or
complex queries.

1.4 Paper Organization
Background information and related work are presented in
Section 2, and our proposed hash partitioning algorithm,
N-Hash is introduced in Section 3. In Section 4, empirical
results obtained with N-Hash are discussed. Conclusions are
presented in Section 5.

2. BACKGROUND AND RELATED WORK

2.1 Blocked I/O vs Page-sized I/O
DBMSs basically manage the database in pages whose size
is typically 8kb. Such pages are read and written between
the secondary storage and main memory through the buffer
manager. The read and write mechanisms for the pages are
collectively called the page-sized IO. Storing data into pages
makes it easier for DBMSs to manage data. However, use
of the page-sized I/O mechanism lead to many I/Os with
very small granularity. Therefore, in query processing, the
blocked I/O technique has been preferred. In the blocked
I/O method, read and write operations are performed in
blocks whose the size is greater than the page size.

2.2 Memory Management in DBMSs
In this section, we introduce memory management for hash
partitioning in three representative DBMSs: PostgreSQL,
DB2 and Oracle. To investigate the memory management

mechanism for hash partitioning in PostgreSQL, we sur-
veyed the PostgreSQL 9.1.4 documentation [19] and ana-
lyzed the associated source code. For DB2 and Oracle, we
referred to their respective manuals written for system ad-
ministrators [10, 11, 17].

In PostgreSQL, the total memory for output buffers is only
8MB and output buffer is performed in the mannar of page-
sized I/O. PostgreSQL allocates 1MB for an in-memory hash
table and 8MB to write data exceeding the in-memory hash
table. The hash join algorithm in PostgreSQL uses an in-
memory hash table in a special memory region called work-
ing memory and page-sized output buffers (for partitions)
are placed in the other memory region. PostgreSQL flushes
the output buffers using the page-sized I/O method.

Both DB2 and Oracle can dynamically redistribute available
main memory space between several main memory regions
including the buffer pool, regions for hashing and sorting
and so on. The operation to redistribute the memory space,
itself, is expensive. Since depriving memory space cannot be
performed instantly and should be performed very carefully,
a very elaborate process is needed.

2.3 Related Work
Many flash memory oriented indexes have been proposed.
Early studies [15, 22] focused on reducing the number of
page writes caused by index operations. FD-tree [13] was the
first flashSSD-oriented index that exploited the outstanding
sequential bandwidths of flashSSDs, while PIO B-tree [18]
was the flashSSD-oriented index that exploited the internal
parallelism of flashSSDs.

Query processing algorithms for flashSSDs have drawn less
attention than the other DBMS technologies. The perfor-
mance of major ad-hoc join algorithms for flashSSDs was
assessed using the buffer allocation method proposed by [8]
in the study [6]. Based on the PAX layout [1] and late mate-
rialization, FlashJoin [21] demonstrated outstanding perfor-
mance when the projectivity and selectivity of queries were
low. FlashJoin [21] is a general pipelined join algorithm
that reduces the amount of I/O transfers based on the PAX
layout [1] and late materialization strategy.

[12] is a research for a hash join algorithm to exploit internal
parallelism of flashSSDs. ParaHashJoin divides a relation
into k regions. k threads read each corresponding region
(ParaScan). Each thread also perform hash partitioning for
read region(ParaHash). All threads share the in-memory
hash table for hash partitioning. However, to achieve max-
imum performance of ParaHashJoin, too many of threads
are needed. In [12], ParaHashJoin uses 20 threads.

2.4 Psync I/O Write Benchmark Results
In this section, benchmarks results are presented in order
to investigate the effects of internal parallelism on flashSSD
bandwidths. Because exsisting benchmark tools does not
support Psync I/O, we developed our own benchmark tool
called AIOMicrobench that generates outstanding I/Os. Fol-
lowing work presented in [18] Libaio API was used to imple-
ment Psync I/O . To make the I/Os bypass the file system
cache, unbuffered I/O (direct I/O in Linux) was adopted. In
a hexacore 3.2GHz Linux machine with 16GB of RAM, we

 0

 100

 200

 300

 400

 500

 600

 1 2 4 8 16 32 64 128 256 512

W
ri
te

 B
a

n
d

w
id

th
 (

M
B

/s
)

Outstanding I/O level

4kb io
8kb io

16kb io
32kb io
64kb io

128kb io
256kb io
512kb io

1024kb io
2048kb io

(a) Fusion-io IODrive

 0

 50

 100

 150

 200

 250

 300

 1 2 4 8 16 32 64 128 256 512

W
ri
te

 B
a

n
d

w
id

th
 (

M
B

/s
)

Outstanding I/O level

4kb io
8kb io

16kb io
32kb io
64kb io

128kb io
256kb io
512kb io

1024kb io
2048kb io

(b) Micron p300

 0

 50

 100

 150

 200

 250

 300

 350

 1 2 4 8 16 32 64 128 256 512

W
ri
te

 B
a

n
d

w
id

th
 (

M
B

/s
)

Outstanding I/O level

4kb io
8kb io

16kb io
32kb io
64kb io

128kb io
256kb io
512kb io

1024kb io
2048kb io

(c) OCZ vertex3 max IOPS

Figure 2: Benchmark results of the write operation with Psync I/O on three flashSSDs

used three flashSSD devices for benchmarks, Fusion-io IO-
Drive [7], micron p300 [14] and OCZ vertex 3 max IOPS [16].
We carefully chose the flashSSDs for the benchmarks to in
order to evaluate various flashSSD architectures. IODrive
is a high-priced enterprise-level flashSSD with PCI-e host
I/F (interface) and 50nm SLC NAND flash memory, while
p300 is an enterprise-level flashSSD with SATA3 host I/F
and 35nm SLC NAND flash memory. vertex3 max IOPS is
a consumer-level flashSSD with SATA3 host I/F and 32nm
MLC NAND flash memory. The benchmarks were used to
measure the write bandwidth as the I/O size and outstand-
ing I/O level were varied. In each benchmark, we created
an 8GB file. The I/O size was increased by multiples of 2,
from 4 KB to 2048KB. For each I/O size, we varied the out-
standing I/O level from 1 to 512. The total amount of data
written by the I/O operations was 2GB.

The write bandwidth results obtained with IODrive, p300
and vertex3 max IOPS are shown in Figure 2. In general,
the bandwidths of the flashSSDs increased when either the
I/O size or the outstanding I/O level was increased. As
shown in Figure 2(a), regardless of I/O sizes, the bandwidth
of IODrive reached the maximum bandwidth of flashSSDs.
In contrast, the bandwidth of p300 and vertex3 Max IOPS
did not reach the maximum bandwidth when the I/O sizes
were small. In the case of p300, the bandwidth reached the
max bandwidth when the I/O size was greater than or equal
to 64 KB. The bandwidth of vertex3 max IOPS did not reach
the maximum bandwidth when the I/O size was 4KB.

3. N-HASH
In this section, we introduce our novel hash partitioning al-
gorithm, n-way hash partitioning (N-Hash). In the tradi-
tional hash partitioning algorithm, a DBMS writes just one
output buffer filled with tuples when the output buffer be-
comes full as described in Section 1.2. However, in N-Hash,
the DBMS writes both the output buffer filled with tuples
and portions of other output buffers filled with tuples. Con-
sequently, N-Hash can create outstanding I/Os, and can bet-
ter utilize the internal parallelism of flashSSDs. In N-Hash,
each output buffer is divided into several small blocks each
of which is the basic I/O unit for writes. The overall process
to fill and flush our own output buffer is analogous to that
of a circular queue.

Algorithm 1: NHash(R,n,sizeIB,sizeOB,keyList)

Input:
R : relation which will be partitioned
n : relation into which the t will be inserted
sizeIB : size of input buffer
sizeOB : size of circular output buffer
keyList : list of partitioning key
Output: none

1 inBuf ← alloc(sizeIB);
2 outBufs ← alloc(n * sizeOB);
3 relOffset ← 0;
4 while (sizeRead ← readData(inBuf, R, sizeIB, relOffset))

!= 0 do
5 relOffset += sizeRead;
6 foreach tuple t In inBuf do
7 hv ← hashFunc(t, keyList);
8 if emptySpace(outBufs[hv]) < sizeof(t) then
9 batches ← mkBatches(outBufs, hv, n);

10 flushBatches(batches);
11 batches ← NULL

12 end
13 insert(outBufs[hv], t);

14 end
15 writeAllFilledSubBufferes(outBufs,n);

16 end

As shown in Figure 3, N-Hash uses the input buffer for the
input relation and an alternative data structure instead of
the original output buffer, namely circular output buffer (cir-
cular buffer in short). Each circular buffer is subdivided
into uniform pieces, called sub-buffer. Each sub-buffer can
have the following three states: fully-filled, partially-filled
and empty. Fully-filled means that the sub-buffer is full and
there is no more space in which to insert tuples. Partially-
filled indicates that there is available space where tuples can
be inserted. In an empty sub-buffer, there is no inserted
tuple. The gray portions in each sub-buffer of Figure 3(a)
represent regions filled with tuples; fully-filled sub-buffers
are entirely marked in gray color, and partially-filled sub-
buffers have some gray portions. Empty sub-buffers have no
gray shade.

The process of N-Hash is described as follows: First, N-Hash

(a) Before the tuples in circular buffers are written into
storage. (b) After fully-filled sub-buffers are written to the disk.

Figure 3: Illustration of the internal structure of memory for N-Hash in two situations.

reads the input relation in the input buffer as large as the
input buffer. Each tuple in the input buffer is moved to a
corresponding circular buffer on the basis of the hash value
if the circular buffer has an empty space to accommodate
the tuple (Lines 4 to 14 of Algorithm 1). When one of the
circular buffers becomes full, all the fully-filled sub-buffers
(Lines 8 to 12) regardless of the circular buffer which to
the sub-buffers belong. The write operation is performed as
batches of contiguous fully-filled sub-buffers in all the cir-
cular buffers. In Figure 3(a), a rectangle surrounded with
red bold lines represents a batch to be written as a chunk,
and there are five batches to be flushed. After the write op-
eration, only one partially filled sub-buffer remains in each
circular buffer while other sub-buffers become empty as il-
lustrated Figure 3(b). The partially filled sub-buffer in each
circular buffer becomes the beginning sub-buffer of the cir-
cular buffer. The next tuple to be inserted into the circular
buffer is appended next to the last tuple in the partially filled
sub-buffer. This process is iterated until the input relation
is completely read. At the end of the iteration, non-empty
sub-buffers are flushed to the flashSSDs (Line 15).

To perform Psync I/O, N-Hash maintains a list of batches
to write. After all the batches are appended to the list, I/Os
for the batches are requested all at once through Psync I/O,
where the outstanding I/O level (the number of I/Os re-
quested at once) is equal to the number of batches in the
list. However, in a circular buffer, the first tuple may not be
placed in the first sub-buffer and thus, one or two batches
to be written can exist in the buffer. For example, the first
tuple of the circular buffer for partition 1 in Figure 3(b) is
placed on sub-buffer 3. When the circular buffer for parti-
tion 1 becomes full, the order for writing sub-buffers will be
the 3rd, 4th, 5th, 1st and 2nd sub-buffer. Sub-buffer 3, 4
and 5 compose one batch while the other batch is comprised
of sub-buffer 1 and 2.

There is an issue with how to determine the size of a sub-
buffer. As described in Section 2.4, if the sub-buffer is too
small, the bandwidth of the flashSSDs cannot reach a max-
imum value. We can set the default size of a sub-buffer to
the minimum I/O size which can reach the maximum band-
width. However, If the available size of memory is too low,
the size of each circular buffer should be less than or equal
to the minimum I/O size which can reach the maximum
bandwidth. If we use one sub-buffer for each circular buffer,
outstanding I/O level is always one. When the outstanding
I/O level is low, it is hard to exploiting the internal paral-
lelism of the flashSSDs (see Section 2.4). Therefore, in this
case, we divide the circular buffer into multiple sub-buffers

regardless of I/O size.

To incorporate our idea with page-sized I/O scheme, the
algorithm must be adjusted slightly. Instead of making a
batch of contiguous sub-buffers, each sub-buffer comprises
a batch. Consequently, Psync I/O is performed with the
outstanding I/O level equal to the number of fully-filled sub-
buffers.

4. EXPERIMENT
In this section, we compare the performance of N-Hash with
that of the traditional hash partitioning method. However,
there are differences between the configurations that the
query processing algorithms use for their own hash parti-
tioning. For example, the buffer allocation method for the
hash partitioning of Grace Hash Join is different from that
for the hash partitioning of Hybrid Hash Join. To reflect
these differences, we compared the performance of N-Hash
with that of the traditional hash partitioning algorithm in
two different environments. In the first experimental set, we
measured the performance of each algorithm as the output
buffer size and number of partitions was varied in order to
evaluate the algorithms with various buffer allocation set-
tings. In the second set of experiments, we investigate the
performance of hash partitioning associated with join pro-
cessing. we used the optimized buffer allocation method for
Grace hash join suggested by [8]. Lastly, we measured the
performance of hash partitioning based on the page-sized
I/O (the previous two experimental set used blocked I/O).
In the three experimental set, the performance of the two
algorithms was measured as the amount of available main
memory was varied.

4.1 Experimental Setting
Based on the source code of the PostgreSQL storage man-
ager, we implemented a single-threaded program to read
and partition a PostgreSQL relation file. Non-buffed I/O
was used (direct I/O), where I/Os pass through the file sys-
tem cache. Psync I/O was implemented using libaio API.
We used the same Linux machine and flashSSDs described
in Section 2.4. We also used the ORDERS table in the
TPC-H workload [20], which was created with scale factor
of 10 and contained 15 million tuples with the 2.04 GB file.
The ORDERS table was partitioned using its foreign key,
O CUSTKEY.

4.2 Experiments for Fixed Number Partitions
Here, the amount of the available memory was varied from

 6

 28

 8

 16

 4 8 16 32 64 128 256 512

E
la

p
s
e

d
 T

im
e

 (
s
e

c
)

Total Size of the Available Memory (MB)

N-Hash 32
N-Hash 128
N-Hash 512

original Hash 32
original Hash 128
original Hash 512

(a) Fusion-io IODrive

 13

 40

 16

 32

 4 8 16 32 64 128 256 512

E
la

p
s
e

d
 T

im
e

 (
s
e

c
)

Total Size of the Available Memory (MB)

N-Hash 32
N-Hash 128
N-Hash 512

original Hash 32
original Hash 128
original Hash 512

(b) Micron p300

 10

 24

 16

 4 8 16 32 64 128 256 512

E
la

p
s
e

d
 T

im
e

 (
s
e

c
)

Total Size of the Available Memory (MB)

N-Hash 32
N-Hash 128
N-Hash 512

original Hash 32
original Hash 128
original Hash 512

(c) OCZ vertex max IOPS

Figure 4: Elapsed time in log scale, varying the available memory size

8MB to 452MB. We also varied the number of partitions,
as 2, 8, 32, 128 and 512 in the experiments. To evaluate
the write performance, the input buffer size was fixed at
4MB. The 4MB-sized input buffer size is sufficient to ex-
ploit the internal parallelism of the flashSSDs. The remain-
der of the main memory was allocated to the output buffers.
Figure 4 shows the elapsed time of N-Hash and the tradi-
tional hash partitioning in log scale. In the figure, the results
obtained with 2 and 8 partitions are omitted since similar
performance was observed with 32 partitions. Regardless
of the algorithm, the elapsed time decreased as the amount
of available memory increased or the number of partitions
decreased. This is because either increasing the available
memory size or reducing the number of partitions made each
output buffer larger. Enlarged output buffer led to better
utilization of the internal parallelism of the flashSSDs. How-
ever, since our method created outstanding I/Os and thus,
further exploited the internal parallelism, N-Hash outper-
formed traditional hash partitioning. N-Hash was up to
3.55, 1.31 and 1.50 times faster than the traditional hash
partitioning algorithm on the IODrive, p300 and vertex3
max IOPS, respectively. It is worth noting that on the IO-
Drive, the performance of N-Hash was nearly independent
of the available main memory size, whereas the performance
of the traditional hash partitioning algorithm was severely
degraded when the available main memory size was small.

4.3 Experiments for Hash Partitioning in Grace
Hash Join

In this experimental set, experiments were conducted using
the buffer allocation method for Grace Hash Join presented
in [8]. The size of each memory component is defined as
follows:

B =

⌈
|R|F +

√
|R|2F 2 + 4M |R|F

2M

⌉
(1)

O =

⌊
M

B + 1

⌋
(2)

I = M −B ×O (3)

where B is the number of partitions for Grace hash join,
while O and I are the size of the output and input buffers,
respectively, in partitioning phase.

Figure 5 shows the elapsed time of N-Hash and optimized
hash partitioning algorithm proposed by [8]; samples of the
results and parameters are given in Table 1. Here, the avail-
able memory size was varied from 4MB to 256MB. N-Hash
outperformed the traditional hash partitioning algorithm on
all the flashSSDs. The speed was increased by amaximun of
3.45, 1.30 and 1.43 times on the IODrive, p300 and vertex3
max IOPS, respectively. In Figure 5, the performance of IO-
Drive is independent of the size of allocated memory for the
hash partitioning operation, while the performance of p300
and vertex3 max IOPS is not. When the DBMS allocates
less available memory for the hash partitioning operation,
the size of each output buffer is also small. For example,
the size of each output buffer is 8, 32, 152 KBs on 5, 10, 20
MBs. On p300 and vertex3 Max IOPS, these output buffer
sizes are not sufficient to perform write operations with the
maximum bandwidth as observed in Figure 2.

It may seem odd that the elapsed time was increased around
20MB on all flashSSDs. As we can see in table 1, the input
buffer size was configured at 208KBs following the buffer
allocation method proposed in [8]. Because 208KB-sized
read operation cannot utilize the maximum bandwidth of
flashSSDs, the read operation took a longer amount of time
when compared with other memory conditions.

In terms of the memory requirements to yield the same per-
formance with both algorithms, N-Hash requires a lower
amount of memory for the same level of performance when
compared to the traditional hash partitioning algorithm. On
the IODrive, the performance of N-Hash is always maxi-
mized regardless of the amount of available memory. On
vertex3 max IOPS, N-Hash is performed with maximum
performance if the size of available memory is larger than
10MB. On the other hands, the performance of traditional
hash partitioning algorithm is the same as of that of N-Hash
with 200MB of available memory. This means that N-Hash
makes the DBMS perform 20 times more concurrent users
or about 20 times bigger input data with maximum per-
formance when compared with traditional hash partitioning
algorithm.

4.4 Experiment for Page-sized I/O
We compared N-Hash with the traditional hash partition-
ing algorithm, based on page-sized I/O as the amount of

 0

 5

 10

 15

 20

 25

 30

 2 4 8 16 32 64 128 256 512

E
la

p
s
e

d
 T

im
e

 (
s
e

c
)

Total Size of the Avaiable Memory (MB)

N-Hash
original Hash

(a) Fusion-io IODrive

 0

 5

 10

 15

 20

 25

 30

 35

 2 4 8 16 32 64 128 256 512

E
la

p
s
e

d
 T

im
e

 (
s
e

c
)

Total Size of the Avaiable Memory (MB)

N-Hash
original Hash

(b) Micron p300

 0

 5

 10

 15

 20

 25

 2 4 8 16 32 64 128 256 512

E
la

p
s
e

d
 T

im
e

 (
s
e

c
)

Total Size of the Avaiable Memory (MB)

N-Hash
original Hash

(c) OCZ vertex max IOPS

Figure 5: Elapsed time, using the buffer allocation method for Grace hash join

Table 1: Detailed results from Figure 5

Parameters N-Hash Original Hash

Device Mem B O I total read write total read write speedup
(MB) (KB) (KB) (s) (s) (s) (s) (s) (s)

iodrive 5 517 8 856 7.98 3.05 3.51 27.56 3.16 21.85 3.45X
10 259 32 1696 7.4 2.95 3.21 13.58 3.05 8.38 1.84X
20 130 152 208 9.09 3.72 3.21 11.61 4.94 4.56 1.28X
30 87 336 720 7.96 3.3 3.24 9.17 3.65 3.91 1.15X
50 53 920 1160 7.85 3.3 3.26 8.75 3.55 3.89 1.12X

100 27 3560 3720 7.51 3.16 3.41 7.48 3.04 3.59 1X
200 14 13312 13312 7.38 2.8 3.54 7.29 2.82 3.48 0.99X

p300 5 517 8 856 23.3 5.99 15.43 30.24 6.09 21.75 1.3X
10 259 32 1696 17.46 5.87 9.8 20.65 5.84 12.32 1.18X
20 130 152 208 17.7 6.8 8.43 18.54 7.22 8.97 1.05X
30 87 336 720 15.44 5.89 7.97 16.57 6.24 8.46 1.07X
50 53 920 1160 15.16 5.82 8.03 15.39 5.96 7.97 1.01X

100 27 3560 3720 14.57 5.8 7.66 14.56 5.83 7.62 1X
200 14 13312 13312 14.89 5.72 8.04 14.71 5.68 7.95 0.99X

vertex3 5 517 8 856 15.93 5.59 8.25 22.76 5.52 15.05 1.43X
max 10 259 32 1696 11.72 5.02 4.98 15.18 5.29 7.56 1.29X
IOPS 20 130 152 208 13.11 6.18 4.62 15.43 8.3 4.89 1.18X

30 87 336 720 11.56 5.39 4.67 12.49 6.15 4.57 1.08X
50 53 920 1160 11.08 4.98 4.87 11.62 5.21 5.05 1.05X

100 27 3560 3720 10.35 4.53 4.81 10.99 4.59 5.38 1.06X
200 14 13312 13312 10.59 4.35 5.06 10.71 4.25 5.42 1.01X

 0

 10

 20

 30

 40

 50

 60

 2 4 8 16 32 64 128

E
la

p
s
e

d
 T

im
e

 (
s
e

c
)

Total Size of Available Memory (MB)

original Hash 2
N-Hash 2
N-Hash 8

N-Hash 32
N-Hash 128
N-Hash 512

(a) Fusion-io IODrive

 0

 10

 20

 30

 40

 50

 60

 2 4 8 16 32 64 128

E
la

p
s
e

d
 T

im
e

 (
s
e

c
)

Total Size of Available Memory (MB)

original Hash 2
N-Hash 2
N-Hash 8

N-Hash 32
N-Hash 128
N-Hash 512

(b) Micron p300

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 50

 2 4 8 16 32 64 128

E
la

p
s
e

d
 T

im
e

 (
s
e

c
)

Total Size of Available Memory (MB)

original Hash 2
N-Hash 2
N-Hash 8

N-Hash 32
N-Hash 128
N-Hash 512

(c) OCZ vertex max IOPS

Figure 6: Elapsed time, using page-sized I/O

the available memory was varied from 4MB to 112MB. The
number of partitions was also varied, as 2, 8, 32, 128 and 512.
The results obtained in this experiment are shown in Figure
6. Allocating more memory made no significant differences
for the traditional hash partitioning algorithm. This is be-
cause the output buffer size does not change in page-sized
I/O. However, since our method created outstanding I/Os,
N-Hash outperformed traditional hash partitioning. Specifi-
cally N-Hash was up to 2.36, 1.68 and 1.59 times faster than

the traditional hash partitioning on the IODrive, p300 and
vertex3 max IOPS, respectively.

5. CONCLUSION AND DISCUSSION
In this paper, we proposed a novel hash partitioning al-
gorithm for flashSSDs, called n-way hash partitioning (N-
Hash) that exploits the internal parallelism of flashSSDs.
Regardless of the main memory size or support for blocked

I/O, N-Hash can exploit the internal parallelism of flashSSDs
by outstanding I/Os. Consequently, N-Hash outperforms
the traditional hash partitioning method. From the exper-
imental results, N-Hash was found to be up to 3.55 times
faster than the traditional hash partitioning algorithm, with
blocked I/O. With page sized I/O, our algorithm was up to
2.36 times faster than the traditional hash partitioning al-
gorithm. In addtition, N-Hash can reduce the cost of dy-
namic memory tuning for DBMSs and make DBMSs more
endurable in stressful situations where the amount of input
data is large and there are many user connections or com-
plex queries, because N-Hash exhibits excellent performance
with a small amount of memory and occupies CPU resources
for just one thread. However, several types of flashSSDs like
NVMe are developed. Because NVMe supports more I/O
queue and channel than traditional flashSSDs, Evaluating
N-Hash on NVMe is necessary.

6. ACKNOWLEGMENTS
This work was supported by the National Research Foun-
dation of Korea(NRF) grant funded by the Korea govern-
ment(MSIP) (NRF-2015R1A2A1A05001845).

7. REFERENCES
[1] A. Ailamaki, D. J. DeWitt, and M. D. Hill. Data page

layouts for relational databases on deep memory
hierarchies. The VLDB Journal, 11(3):198–215, 2002.

[2] K. Bratbergsengen. Hashing methods and relational
algebra operations. In Proceedings of the 10th
International Conference on Very Large Data Bases,
pages 323–333. Morgan Kaufmann Publishers Inc.,
1984.

[3] F. Chen, R. Lee, and X. Zhang. Essential roles of
exploiting internal parallelism of flash memory based
solid state drives in high-speed data processing. In
High Performance Computer Architecture (HPCA),
2011 IEEE 17th International Symposium on, pages
266–277. IEEE, 2011.

[4] H. Choi, J. Son, H. Yang, H. Ryu, B. Lim, S. Kim,
and Y. D. Chung. Tajo: A distributed data warehouse
system on large clusters. In Data Engineering (ICDE),
2013 IEEE 29th International Conference on, pages
1320–1323. IEEE, 2013.

[5] J. Dean and S. Ghemawat. Mapreduce: simplified
data processing on large clusters. Communications of
the ACM, 51(1):107–113, 2008.

[6] J. Do and J. M. Patel. Join processing for flash ssds:
remembering past lessons. In Proceedings of the Fifth
International Workshop on Data Management on New
Hardware, pages 1–8. ACM, 2009.

[7] Fusion-io. iodrive data sheet.
http://www.fusionio.com/load/-media-/1ufytn/
docsLibrary/FIO DS ioDrive.pdf, 2010.

[8] L. M. Haas, M. J. Carey, M. Livny, and A. Shukla.
Seeking the truth about ad hoc join costs. The VLDB
Journal, 6(3):241–256, 1997.

[9] Y. Hu, H. Jiang, D. Feng, L. Tian, H. Luo, and
S. Zhang. Performance impact and interplay of ssd
parallelism through advanced commands, allocation

strategy and data granularity. In Proceedings of the
international conference on Supercomputing, pages
96–107. ACM, 2011.

[10] IBM. Ibm db2 10.1 for linux, unix, and windows
database administration concepts and configuration
reference.
http://public.dhe.ibm.com/ps/products/db2/info/
vr101/pdf/en US/DB2AdminConfig-db2dae1010.pdf,
2012.

[11] IBM. Ibm db2 10.1 for linux, unix, and windows
troubleshooting and tuning database performance.
http://public.dhe.ibm.com/ps/products/db2/info/
vr101/pdf/en US/
DB2PerfTuneTroubleshoot-db2d3e1010.pdf”, 2012.

[12] W. Lai, Y. Fan, and X. Meng. Scan and join
optimization by exploiting internal parallelism of
flash-based solid state drives. In Web-Age Information
Management, pages 381–392. Springer, 2013.

[13] Y. Li, B. He, R. J. Yang, Q. Luo, and K. Yi. Tree
indexing on solid state drives. Proceedings of the
VLDB Endowment, 3(1-2):1195–1206, 2010.

[14] Micron. p300 data sheet.
http://www.micron.com/˜/media/Documents/
Products/Product\%20Flyer/p300 product brief.pdf,
2010.

[15] G.-J. Na, S.-W. Lee, and B. Moon. Dynamic in-page
logging for flash-aware b-tree index. In Proceedings of
the 18th ACM conference on Information and
knowledge management, pages 1485–1488. ACM, 2009.

[16] OCZ. Vertex3 max iops product sheet.
http://www.ocztechnology.com/res/manuals/OCZ
Vertex3 MAX IOPS Product sheet.pdf, 2011.

[17] Oracle. Oracle database concepts 11g release 2 (11.2).
http://www.oracle.com/pls/db112/to pdf?pathname=
server.112/e25789.pdf, 2011.

[18] H. Roh, S. Park, S. Kim, M. Shin, and S.-W. Lee.
B+-tree index optimization by exploiting internal
parallelism of flash-based solid state drives.
Proceedings of the VLDB Endowment, 5(4):286–297,
2011.

[19] The PostgreSQL Global Development Group.
Postgresql 9.1.6 documentation.
http://www.postgresql.org/files/documentation/pdf/
9.1/postgresql-9.1-A4.pdf, 2013.

[20] Transaction Processing Performance Council. Tpc
benchmark h: Standard specification, revision 2.14.4.
http://www.tpc.org/tpch/spec/tpch2.14.4.pdf, 2012.

[21] D. Tsirogiannis, S. Harizopoulos, M. A. Shah, J. L.
Wiener, and G. Graefe. Query processing techniques
for solid state drives. In Proceedings of the 2009 ACM
SIGMOD International Conference on Management of
data, pages 59–72. ACM, 2009.

[22] C.-H. Wu, T.-W. Kuo, and L. P. Chang. An efficient
b-tree layer implementation for flash-memory storage
systems. ACM Transactions on Embedded Computing
Systems (TECS), 6(3):19, 2007.

