
Available online at www.sciencedirect.com
Information Sciences 178 (2008) 694–713

www.elsevier.com/locate/ins
Privacy preserving data mining of sequential patterns
for network traffic data q

Seung-Woo Kim a, Sanghyun Park a,*, Jung-Im Won b, Sang-Wook Kim b

a Department of Computer Science, Yonsei University, 134 Sinchon-dong, Seodaemun-gu, 120-749 Seoul, Republic of Korea
b College of Information and Communications, Hanyang University, Republic of Korea

Received 2 November 2006; received in revised form 3 August 2007; accepted 25 August 2007
Abstract

As the total amount of traffic data in networks has been growing at an alarming rate, there is currently a substantial
body of research that attempts to mine traffic data with the purpose of obtaining useful information. For instance, there
are some investigations into the detection of Internet worms and intrusions by discovering abnormal traffic patterns. How-
ever, since network traffic data contain information about the Internet usage patterns of users, network users’ privacy may
be compromised during the mining process. In this paper, we propose an efficient and practical method that preserves pri-
vacy during sequential pattern mining on network traffic data. In order to discover frequent sequential patterns without
violating privacy, our method uses the N-repository server model, which operates as a single mining server and the reten-

tion replacement technique, which changes the answer to a query probabilistically. In addition, our method accelerates the
overall mining process by maintaining the meta tables in each site so as to determine quickly whether candidate patterns
have ever occurred in the site or not. Extensive experiments with real-world network traffic data revealed the correctness
and the efficiency of the proposed method.
� 2007 Elsevier Inc. All rights reserved.

Keywords: Data mining; Sequential pattern; Network traffic; Privacy
1. Introduction

The number of computers connected to the Internet and exchanging data via the Internet have dramatically
increased, owing to the rapid advance of network technology. Recently, a new kind of data mining has
appeared in which researchers extract useful knowledge from network traffic data that are automatically gath-
ered by a remote server [6,12,15,19,27]. Identifying patterns of network intrusions and differentiating anom-
alous network activity from normal network traffic data are typical examples.
0020-0255/$ - see front matter � 2007 Elsevier Inc. All rights reserved.

doi:10.1016/j.ins.2007.08.022

q This work was partially supported by the Korea Research Foundation Grant funded by the Korean Government (KRF-2005-041-
D00651) and the ITRC support program supervised by the IITA (IITA-2005-C1090-0502-0009).

* Corresponding author. Tel.: +82 2 2123 5714; fax: +82 2 365 2579.
E-mail addresses: kimsw@cs.yonsei.ac.kr (S.-W. Kim), sanghyun@cs.yonsei.ac.kr (S. Park), jiwon@hanyang.ac.kr (J.-I. Won),

wook@hanyang.ac.kr (S.-W. Kim).

mailto:kimsw@cs.yonsei.ac.kr
mailto:sanghyun@cs.yonsei.ac.kr
mailto:jiwon@hanyang.ac.kr
mailto:wook@hanyang.ac.kr

Table 2
An example of sequential patterns that can be discovered from network traffic data

Sequential pattern 1 Receiving data from 192.168.1.254
! Sending data to 192.168.1.254
! Sending data to 192.168.1.254
! Sending data to 192.168.1.254

Sequential pattern 2 Receiving data from amazon.com
! Sending data to amazon.com

Table 1
An example of network traffic data gathered by Ethereal

Timestamp Source address Source port Destination address Destination port

13:37:11.950966 180.1.1.1 36872 amazon.com www
13:37:11.954474 amazon.com www 180.1.1.1 36872
13:37:22.384472 180.1.1.1 36915 192.168.1.3 telnet
13:37:22.385327 192.168.1.3 telnet 180.1.1.1 36915

S.-W. Kim et al. / Information Sciences 178 (2008) 694–713 695
Table 1 shows an example of network traffic data gathered by Ethereal.1 A row in the table represents an
individual network traffic datum and consists of its source address, source port, destination address, destina-
tion port, and timestamp.

Network traffic data have the following characteristics in comparison with other data: First, various kinds
of data exist since all the computers connected to the Internet can potentially produce network traffic data.
Second, a huge amount of network traffic data accumulates due the frequent exchanges among many comput-
ers sending/receiving information. Third, the network traffic data to be analyzed are generally scattered over a
large number of sites.

Various data mining techniques such as association rules [19] and clustering [6] can be applied for analyzing
network traffic data. Sequential pattern mining [12,15,27], however, is the most useful since the order of events
has an important meaning in network traffic data. Table 2 shows an example of supposed sequential patterns
that can be discovered from network traffic data. Here, sequential pattern 2 says that numerous sites send data
to ‘‘amazon.com’’ right after receiving data from ‘‘amazon.com’’.

Network traffic data contain detailed information of Internet usage for every user, which informs that a
user accesses a site at a time specifically. Herein, data mining on network traffic data inherently has the prob-
lem of compromising privacy of network users. Therefore, it requires sophisticated techniques for hiding or
reforming users’ private information during a data gathering process. Moreover, these techniques should
not sacrifice the correctness of mining results.

Privacy-preserving data mining is a new research area that aims to mine data while guaranteeing the pri-
vacy of individual users [2,3,5,7,8,13,16,18,24,25,30,32]. Recently, there have been many research efforts per-
formed in this area. Most methods proposed in prior studies, however, manage data in a few sites or deal with
a small number of distinct types of data. Thus, these methods are not appropriate for mining network traffic
data since they suffer from inaccuracy and low performance.

This paper proposes an efficient mining method of sequential pattern mining that preserves privacy while
solving the problems of inaccuracy and low performance encountered in prior methods. In order to discover
frequent items (i.e., a pattern of length 1) without compromising privacy, the proposed method uses the
N-repository server model that operates as a single mining server. Also, it maintains meta tables in each site
so as to quickly determine whether candidate frequent patterns have ever occurred in the site, thereby making
the whole mining process highly efficient.

The procedure for finding frequent items with the N-repository server model is as follows: first, every site
partitions its own network traffic data into N groups by using a hash function and encrypts each group by a
unique encryption key assigned to the group. Then, it sends each encrypted group to one of N servers. Note
1 http://www.ethereal.com/.

http://www.ethereal.com/

696 S.-W. Kim et al. / Information Sciences 178 (2008) 694–713
that this server cannot decrypt the group since it does not have the corresponding decryption key. A server
determines frequent items by totalizing the occurrences of each item received. For decrypting each frequent
item thus discovered, the server sends the item to another server that has its corresponding decryption key.
The N servers all perform the decryption process for items received and then make one coordinating server
totalize the occurrences of each candidate frequent item in order to find the real frequent items.

The coordinating server generates candidate patterns by combining those frequent items found and queries
every site to assess whether each candidate pattern occurs in the site. In order to quickly recognize the occur-
rences of candidate patterns, each site maintains meta tables that store two things: (1) pairs of frequent items
that occur together within a pre-specified interval and (2) frequent patterns that occurred in the site. In the
meta tables, 1 and 0 indicate whether the frequent pattern has occurred or not, respectively. Also, each site
sends the coordinating server these values perturbed by the probability p. For each candidate pattern, the ser-
ver totalizes the occurrences of 1 and 0 and then determines the candidate frequent pattern by computing the
real distribution of 1 and 0 using the frequencies and probability p.

In this paper, we discuss solutions to the problems that occur in previous methods. We propose a novel
method for sequential pattern mining on network traffic data. The proposed method preserves site privacy
and guarantees the correctness of the mining results. The method discovers frequently occurring network traf-
fic patterns (i.e., frequent items) while hiding site information in two ways: (1) it employs the N-repository
server model, which forces multiple servers to behave as a single mining server; (2) it uses the retention replace-

ment technique, which changes the answer according to a given probability. Also, the method maintains meta

tables in each site so as to quickly determine whether candidate patterns ever occurred in the site, thereby mak-
ing the overall mining process highly efficient.

The paper is organized as follows: Section 2 reviews previous work related to privacy preserving data min-
ing. Section 3 defines the problem this paper is trying to solve in more detail. Section 4 presents our detailed
methodology. Section 5 verifies the correctness and the efficiency of the proposed method via a variety of
experiments performed on real-world network traffic data. Finally, Section 6 summarizes the paper and sug-
gests possible applications for the proposed method.

2. Related work

Sequential pattern mining discovers frequently occurring patterns from large sequence databases [1]. Srik-
ant and Agrawal gave a formal description of the problem of mining generalized sequential patterns [28]:
(1) time constraints are added to specify a minimum and/or maximum time period between adjacent items;
(2) a rigid definition of a transaction is relaxed to allow a pattern to stretch over two adjacent transactions;
(3) sequential patterns are allowed to include items across all levels of a user-specified taxonomy. Also, they
proposed the GSP (general sequential pattern) algorithm for mining such generalized sequential patterns.

Following Srikant’s work, many studies have been performed to determine a more efficient method of dis-
covering sequential patterns [4,10,14,17,20,23]. A typical method is the pattern-growth approach that is based
on the divide-and-conquer concept [10,23]. It recursively projects a sequence database into a set of smaller pro-
jected sequence databases, grows sequential patterns in each projected database by exploring only locally fre-
quent patterns, and then produces the final results by combining local frequent patterns. Kum et al. proposed
a method called ApproxMap for approximate sequential pattern mining [14]. It uses clustering as a preprocess-
ing step in order to group similar sequences, and then mines the underlying consensus patterns in each cluster
through multiple alignments.

The problem of pushing various constraints deep into sequential pattern mining was addressed in [9,22]. Also,
the problem of incremental updates in sequential pattern mining was dealt with in other studies [21,31]. To
reduce many of the meaningless results that are produced, the concept of frequent closed patterns, those contain-
ing no super-patterns with the same support, was introduced in [29] along with efficient discovery methods.

Lee et al. proposed a method that applies sequential pattern mining to intrusion detection [15]. The method
first extracts frequent episode rules by mining network traffic data, builds an intrusion detection model with
those rules, and detects network intrusions based on this model. In this model, a site corresponds to a sequence
to be mined and network traffic data occurring in the site correspond to an item belonging to a transaction.

S.-W. Kim et al. / Information Sciences 178 (2008) 694–713 697
Recently, there have been several research efforts to find effective solutions to intrusion detection by mining
network traffic data [6,12,19,27].

Network traffic data contain detailed information about the Internet usage of individual users. Thus, data
mining on network traffic data may inherently compromise the privacy of network users. Therefore, it requires
sophisticated techniques for masking or reforming users’ private information.

Clifton and Marks [5] first raised the issue of privacy in data mining and inspired subsequent studies
[2,3,7,8,13,16,18,24,25,30,32] that aimed to solve the problem. We can classify these studies into two categories.

Approaches in the first category avoid violating privacy by perturbing the values of individual items
[2,3,7,18,25]. For accurate data mining, they maintain the value distribution of perturbed items kept identical
to the original one. These approaches work well with those data mining algorithms that use the probability
distribution rather than individual items.

In the method proposed in [2], in order to preserve privacy, each site changes the original value of an indi-
vidual item before sending the value to the server by adding an arbitrary value selected from a given proba-
bility distribution. The server builds a decision tree by referencing the actual value distribution, which is
reconstructed by using the probability distribution.

Another method called retention replacement [3,25] perturbs and reconstructs data in gathering and mining,
respectively, for privacy preservation. For every datum whose element represents 0 or 1, each site sends the
original element value with probability p and the perturbed one with probability (1-p). For gathered data,
the server counts the total numbers of 1’s and 0’s and then estimates the original numbers of 1’s and 0’s from
reconstructed data, where an element is retained with probability p and replaced with probability (1-p). This
method is limited, because it is applicable only to boolean data.

Some later studies [3,7] tried to apply those two methods to applications with various types of data, but
these produced lower accuracy in mined results as the number of possible values increases.

The method proposed by Rizvi and Haritsa [25] uses 1 and 0 to represent whether the data occur or not,
respectively. Next, it gathers all data perturbed by the retention replacement and determines the support by
computing 1’s distribution. Then, it finds frequent items by using the support and discovers association rules
by extending them. This method can be applied in cases where pre-determined item types occur. Considering
network traffic data where a large number of item types occur, we can hardly determine all the item types in
advance. Also, this method finds frequent patterns via a whole database scan and thus is very inefficient since
network traffic data are huge. Therefore, we cannot directly apply this method to the discovery of sequential
patterns from network traffic data with privacy preservation.

Liu et al. [18] applied a data perturbation method to data warehouses for range queries without allowing
access to individual data values. This method supports only ‘summation’ queries and therefore has limited
applicability.

In the methods belonging to the second category [8,13,16,24,30,32], a site participates in the data mining
process and directly handles data that can be compromised while a server produces the final result by total-
izing the intermediate results obtained from all the sites. A typical example is the method proposed by Kan-
tarcioglu and Clifton [13]. This method securely collects local frequent itemsets from sites by using
commutative encryption, obtains global frequencies of all the data by using a secure sum which uses a random
number, and finally discovers association rules. For performing commutative encryption and a secure sum,
this method has to send data serially in the cycle of sites. This method is time intensive in cases with a large
number of sites. Fukasawa et al. [8] improved the efficiency and security of this method. However, the
improved method still has cycling communications.

Zhong [32] proposed two privacy preservation methods that can find frequent itemsets from either verti-
cally or horizontally distributed databases. These methods are designed for the semi-honest model among
two or more parties and employ a probabilistic public-key encryption for secure protocols. However, these
methods cannot be applied to databases that are both vertically and horizontally distributed. Furthermore,
since they examine every candidate itemset individually, they are not practical in large databases.

Zhan et al. proposed a method for sequential pattern mining with privacy preservation [30]. This method
mainly targets a distributed database environment where vertical partitioning without duplication is
employed. In our situation, duplicated data could occur in more than one site since multiple PCs can access
the same Internet site. Therefore, this method is inapplicable to network traffic data in the current form.

698 S.-W. Kim et al. / Information Sciences 178 (2008) 694–713
In the method proposed in [16], a secure protocol is used for mining a decision tree classifier from distrib-
uted sites. Pinkas [24] showed how protocols for secure distributed computation can be employed for privacy
preservation; however, he also pointed out that the performance of the proposed protocols should be
improved.

In summary, the methods proposed in prior studies have problems in applications with large amounts of
network traffic data. First, due to a variety of data types, previous methods are not directly applicable and
cannot produce accurate mining results. Second, since a large number of sites exist and data can be duplicated,
previous methods targeted for a distributed database environment have practical limitations.

3. Problem definition

Network traffic data are normally gathered by a tcp/ip data capture program such as Ethereal. As shown in
Table 1, the information obtained from Ethereal consists of its source address, source port, destination
address, destination port, and timestamp. In this paper, we aim at finding sequential patterns, as shown in
Table 2, from network traffic data without disclosing data in each site. First, we simplify the network traffic
data in Table 1 to match those in Table 3. The example in Table 3 represents the network traffic data sent/
received by site ‘‘180.1.1.1’’, where ‘‘out’’ denotes the sending site and ‘‘in’’ does the receiving site. We note
that Table 1 includes port information in the network traffic data that Table 3 does not include. This reduces
the types of possible network traffic data by simplifying them, thereby making the probability of appearances
of frequent patterns increase considerably.

In order to find a temporal relationship among the events in network traffic data thus reconstructed, we can
apply sequential pattern mining methods [12,15,27] after representing each traffic data tuple as an item. At this
point, the maximum time interval is set for deciding whether two adjacent items have meaningful temporal
relationship: (1) without such a setting, the number of sequential patterns to be considered becomes too high;
(2) it is hard to say that two adjacent items whose time interval is large are mutually related. Herein, we impose
a restriction that two adjacent items should have a time interval smaller than or equal to a predefined MaxGap

value to be regarded as related.
We formulate the problem to be solved as follows: given t sites T1,T2, . . . ,Tt, the maximum time interval

MaxGap, and the minimum support MinSup, we discover all the sequential patterns, each of which has a sup-
port larger than MinSup and a time interval between any pair of adjacent items equal to or smaller than Max-

Gap. It is assumed that a site stores network traffic data in the form of Table 3 but does not throw them open
to the public.

A mining process should also satisfy the conditions for preserving privacy in every site. Let us denote a set
of sites where network traffic has occurred as E and a set of network traffic data as I. In a mining process, an
element ej in E is opened since it participates in the mining process; also, an element ik in I is opened since it is a
communication record and should be contained in a sequential pattern resulting from the mining process.
However, a pair of (ej, ik), which denotes that a site ej has been connected to an IP address ik, should not
be opened in a mining process, as a condition for privacy preservation.

4. Proposed method

In this section, we propose an efficient and practical method for solving the problems discussed in the pre-
vious section. We first outline the overall mining process in Section 4.1 and explain the process to discover
Table 3
An example of network traffic data reconstructed

Timestamp In/out Address

13:37:11.950966 Out amazon.com
13:37:11.954474 In amazon.com
13:37:22.384472 Out 192.168.1.3
13:37:22.385327 In 192.168.1.3

S.-W. Kim et al. / Information Sciences 178 (2008) 694–713 699
frequent patterns of length 1 (i.e., frequent items or large 1-sequences) in Section 4.2. We then explain the pro-
cess to find out frequent patterns longer than 1 in Section 4.3. Finally, in Section 4.4, we describe the structure
and usage of the meta tables maintained in each site to quickly determine whether candidate patterns have ever
occurred or not.

4.1. Overall mining process

The proposed mining process consists of four phases as shown in Fig. 1. The first phase utilizes the N-repos-
itory server model to safely discover F1, (or frequent items), large 1-sequences. The second phase generates
Ck+1, a set of all candidate patterns of length k + 1, by self-joining large k-sequences (i.e., Fk). k is initialized
to 1 when the second phase is executed for the first time. If Ck+1 is empty, we enter into the final phase. Other-
wise, we enter into the third phase. For each candidate pattern in Ck+1, the third phase sends every site the
query asking whether the candidate pattern has ever occurred in the site or not. After receiving answers from
all sites, the third phase judges whether each candidate pattern is frequent or not, and then constructs Fk+1,
large k + 1 sequences, with the candidate patterns judged as frequent. The third phase then increases k by 1
and calls the second phase. The final phase prints all frequent patterns, F1,F2, . . . , Fk, and stops the mining
process (see Fig. 2).

4.2. Finding frequent items using N-repository server model

The proposed N-repository server model finds frequent items, F1, without compromising the privacy con-
straint by concealing the linkage between the site identifier and the traffic data, (ej, ik), during the mining pro-
cess. More specifically, it obscures their linkage by encrypting the traffic data, ik, at the first step and by
aggregating the site identifiers, ej, at the second step.

The proposed N-repository server model consists of N servers, {S1,S2, . . .,SN}, and N pairs of encryption
keys and decryption keys, {(EK1,DK1), (EK2,DK2), . . ., (EKN,DKN)}. Each site has all encryption keys but
Discover
frequent items

using
the N-repository

server model

Generate
candidate patterns

of length k +1
by self-joining

frequent patterns
of length k

Choose
frequent patterns

of length k +1
by sending queries

to all sites

Print all
frequent patterns,
F1, F2, …, and Fk

If Ck+1 = Ø

k → k + 1

Fig. 1. Overall mining process.

Network
Traffic
Data

Network
Traffic
Data

Hash
Function …

Encrypted by EKN

Encrypted by EK2

Encrypted by EK1

…

Encrypted by EKN

Encrypted by EK2

Encrypted by EK1

…

Encrypted by EKN

Encrypted by EK2

Encrypted by EK1

…

Encrypted by EKN

Encrypted by EK2

Encrypted by EK1

…

Hash
Function

… …

Network
Traffic
Data

Network
Traffic
Data

S1 (DK1)

…

S2 (DK2)

SN (DKN)

G1

G2

GN

G1

G2

GN

Site

Site

Fig. 2. Process to distribute and encrypt the traffic data using a hash function and encryption keys, respectively.

700 S.-W. Kim et al. / Information Sciences 178 (2008) 694–713
only the server Si has the decryption key DKi (1 6 i 6 N). To find frequent items safely, the N-repository ser-
ver model operates as follows:

1. Each site classifies the items (i.e., the traffic data) organized as in Table 3 into N groups, {G1,G2, . . .,GN},
using a hash function.

2. Each site encrypts the items in Gi with the encryption key EKi (1 6 i 6 N).
3. Each site sends the encrypted items in Gi to server Si+1 (1 6 i 6 N � 1) and the encrypted items in GN to

server S1. The privacy of each site is preserved since no servers have the keys to decrypt the items they
receive.

4. Each server performs the aggregation on the encrypted items to obtain the number of occurrences of each
encrypted item and then picks up the encrypted frequent items, which are the encrypted items whose num-
bers of occurrences are larger than a system-defined threshold.

5. Each server Si sends encrypted frequent items to server Si�1 (2 6 i 6 N) and server S1 sends encrypted fre-
quent items to server SN.

6. Each server Si decrypts the received items with its decryption key DKi and then reports the frequent items to
a principal mining server. The privacy of each site is still preserved even after decryption because the link-
ages between sites and frequent items have been already obscured by aggregation.

In our N-repository server model, an identical hash function is used in every site, and, by the property of
the hash function, the items with the same content congregate in the same group and every item has a corre-
sponding group. Therefore, it is obvious that the union of frequent items discovered within each group is iden-
tical to the set of frequent items discovered from the entire data set without grouping.

We assume that the servers in our model operate in a semi-trusted operation model. In the semi-trusted
operation model, servers may try to acquire private data but do not cooperate with other servers when doing
so. This semi-trusted operation model is common in real environments where one wants to obtain the result of
a computation but is not willing to offer one’s own data to others [30].

4.3. Finding frequent patterns longer than one

After finding all frequent items (i.e., large 1-sequences) using the N-repository server model, we have to dis-
cover sequentially frequent patterns longer than one. At first, one of N servers is elected as a principal mining
server to which all the other servers send the frequent items they discovered. Let F1 be the set of all frequent
items collected at the principal mining server. To discover all frequent patterns longer than one, the principal
mining server assigns 1 to variable k and executes the following steps.

1. It produces Ck+1, the set of candidate patterns of length k + 1, by self-joining Fk in the same way as the
Apriori algorithm [1]. It executes step 5 if Ck+1 is empty. Otherwise, it executes step 2.

2. For each candidate pattern CP in Ck+1, it sends every site T a query asking whether CP has ever occurred in
T or not.

3. Each site T sequentially inspects its own traffic data or the meta tables, which will be described in Section
4.4, to determine CP’s occurrence or non-occurrence in T. An actual answer to the query would be 1 if CP

has ever occurred in T and 0 if CP has never occurred in T. However, to preserve the privacy of the site, the
actual answer is perturbed by the application of retention replacement [25,3]. More precisely, the query is
answered with an actual answer by a given probability p and with the reverse of an actual answer by the
probability 1-p.

4. For each query, the principal mining server aggregates the count of the sites that answered 1 and the count
of the sites that answered 0. Then, using the two counts and the probability p, it conjectures the number of
sites whose actual answers were 1 and the number of sites whose actual answers were 0. It then compares
the number of sites whose actual answers are supposed to be 1 with MinSup, a given minimum support
count. It then constructs Fk+1, the set of frequent patterns of length k + 1, by choosing from Ck+1 only
the candidate patterns whose estimated numbers of occurrences are at least MinSup. It finally increases
k by 1 and calls step 1.

S.-W. Kim et al. / Information Sciences 178 (2008) 694–713 701
5. When it reaches this step, Ck+1 is empty and thus no more candidate patterns can be generated. Therefore,
it prints all the frequent patterns it has discovered so far (i.e., F1,F2, . . .,Fk) and then stops the execution of
the algorithm.

4.4. Meta tables to quickly determine the occurrence or non-occurrence of candidate patterns

In this Section, we describe the structures of the meta tables maintained in each site to quickly determine
whether or not candidate patterns have ever occurred in the site. Before jumping into the details, let us explain
why extra meta tables are needed in our mining process. In the original Apriori algorithm, patterns of length k

can be regarded as candidate patterns only when all of their sub-patterns of length k�1 are frequent. For
example, pattern hA,B,Ci can be treated as a candidate pattern only when all of its sub-patterns of length
2, hA,Bi, hB,Ci, and hA,Ci, are frequent. However, in sequential pattern mining with time constraints, even
the patterns containing infrequent sub-patterns can be treated as candidate patterns if all of their sub-patterns
occurring contiguously in the underlying patterns are frequent. For example, pattern hA,B,Ci can be treated as
a candidate pattern in the sequential pattern mining if both hA,Bi and hB,Ci are frequent, regardless whether
hA,Ci is frequent or not. Therefore, compared with the mining techniques based on the original Apriori algo-
rithm, the sequential pattern mining algorithms with time constraints impose fewer requirements for patterns
to be treated as candidate patterns. As a result, more candidate patterns are generated in the sequential pattern
mining with time constraints and, to accelerate the overall mining process, it is crucial to handle each candi-
date pattern efficiently.

When the principal mining server sends each site T a query asking if a candidate pattern CP has ever
occurred in T, site T sequentially inspects its own traffic data until it detects the occurrence of CP. In the best
case, site T can detect the occurrence of CP after examining the first few items of its traffic data. However, in
the worst case, site T can make such decision after inspecting all the items of its traffic data. In this paper, we
propose employment of special-purpose meta tables in each site T to speed up the process of determining the
occurrence or non-occurrence of CP in T. More specifically, we extract from T’s traffic data all pairs of items
whose time gaps are not larger than MaxGap, a system-defined maximum time gap, and then store them into
the meta tables of T. In addition, we store into the meta tables the candidate patterns whose occurrences are
inquired by the principal mining server and then whose occurrences are detected in site T. Let us first describe
the meta tables for storing all pairs of items whose time gaps do not exceed MaxGap.

4.4.1. Meta tables for storing pairs of items satisfying MaxGap

Let m denote the number of frequent items discovered by using the N-repository server model. At first, the
principal mining server sends out the list of all frequent items to each site T. Then, site T lexicographically
sorts the frequent items it received and assigns each frequent item the corresponding lexicographic order. Note
that all the lexicographic orders must be within the range from 1 to m. Site T then stores the name and lex-
icographic order of each frequent item into the meta table called FreqItems. Table FreqItems consists of two
columns, ItemName and Order. Given a frequent item, columns ItemName and Order store its name and lex-
icographic order, respectively.

The second meta table maintained in each site is OccTs_OccBits. This table consists of three columns,
Order, OccTs, and OccBits. For each frequent item FI found in the traffic data of T, column Order stores
the lexicographic order of FI, and column OccTs stores the timestamp at which FI occurred, and column Occ-
Bits stores a bit-vector of length m whose ith bit indicates whether or not the frequent item of the lexicographic
order i has ever occurred within MaxGap after the occurrence of FI. We denote the ith bit of column OccBits
as OccBits(i). Table OccTs_OccBits can be constructed by scanning the entire traffic data stored in site T.
When a frequent item is found during the scan, a new tuple is created and then inserted into table OccTs_Occ-
Bits. Therefore, the number of tuples in table OccTs_OccBits is same as the number of occurrences of frequent
items in T.

The third meta table maintained in each site is OccCnts. Table OccCnts consists of m + 1 columns, Order,
Cnt1,Cnt2, . . .,Cntm. Table OccCnts has a tuple for each frequent item and therefore contains m tuples. Let us
consider the ith tuple of table OccCnts. It has i as a value of column Order. As a value of column Cntj, it has

702 S.-W. Kim et al. / Information Sciences 178 (2008) 694–713
the number of occurrences of the frequent item of order j whose timestamps are within MaxGap after the
occurrences of the frequent item of order i. The ith tuple of table OccCnts can be populated by executing
the following SQL statement:

insert into OccCnts (Order, Cnt1,Cnt2, . . .,Cntm) values (

i,
(select count(*) from OccTs_OccBits
where Order = i and OccBits(1) = 1),
(select count(*) from OccTs_OccBits
where Order = i and OccBits(2) = 1),
� � �
(select count(*) from OccTs_OccBits
where Order = i and OccBits(m) = 1)

);

An example of meta tables maintained within a single site is shown in Fig. 3. Table FreqItems has three fre-
quent items, A, B, and C, and their orders are 1, 2, and 3, respectively. Table OccTs_OccBits has 12 tuples and
its key consists of two columns, column Order and column OccTs. To understand the functions of its columns,
let us consider its second tuple. The second tuple expresses that the frequent item of order 1, which is A,
occurred at timestamp 13:37:32.43 and only the frequent item of order 2, which is B, occurred within MaxGap
from 13:37:32.43. Table OccCnts has three tuples each of which is distinguished by column Order. To under-
stand the functions of its columns, let us consider its first tuple. It indicates that, within MaxGap after the
occurrence of the frequent item of order 1 (i.e., item A), the frequent item of order 1 (i.e., item A) occurred
0 times, the frequent item of order 2 (i.e., item B) occurred twice, and the frequent item of order 3 (i.e., item
C) occurred once.

If we use these three meta tables, we can quickly determine whether or not candidate patterns have ever
occurred in sites without sequentially scanning the traffic data. In Section 5, we compare the performance
of the method utilizing these three meta tables with the performance of the sequential scanning method.

4.4.2. Determining the occurrences or non-occurrences of candidate patterns

The algorithm to determine the occurrences or non-occurrences of candidate patterns using the meta tables

has 4 steps as shown in Fig. 4. A candidate pattern is divided into several sub-patterns in step 1 and the exe-
cution orders of the sub-patterns are determined in step 2. In step 3, the sub-patterns are executed one by one
according to their execution orders and their results are joined with the previous results. Finally, in step 4, the
occurrence or non-occurrence of the candidate pattern is determined by inspecting the final join result.
Fig. 3. An example of meta tables maintained within a single site.

Divide
a candidate

pattern
into several
sub-patterns

Determine
the execution

orders of
the sub-patterns

Execute
the sub-patterns

and join
their results

Determine
the occurrence or
non-occurrence
by inspecting

the final join result

Fig. 4. Process to determine the occurrences or non-occurrences of candidate patterns using meta tables.

S.-W. Kim et al. / Information Sciences 178 (2008) 694–713 703
1. Divide a candidate patternLet CPn = hI1, I2, . . ., Ini denote a candidate pattern with n items. We first divide
CPn into n � 1 sub-patterns each of which consists of two adjacent items of CPn. The jth sub-pattern of CPn

is denoted as SPj = hIj, Ij+1i (j = 1,2, . . . ,n � 1).
2. Determine the execution orders of the sub-patternsSub-patterns are executed on the meta tables, and their

results are joined with those of other sub-patterns. The sizes of their intermediate results depend on the exe-
cution orders of the sub-patterns. If we are able to discover the optimal execution orders that minimize the
sizes of the intermediate results, we can determine the occurrence or non-occurrence of a candidate pattern
earlier. The simplest way to determine the optimal execution orders is to consider all possible combinations
of execution orders and to choose the one that will produce the smallest intermediate results. However,
there are (n � 1)! distinct combinations of execution orders for n � 1 sub-patterns and thus such a simple
approach is not scalable to large n. Therefore, we employ the following greedy algorithm which quickly dis-
covers near-optimal execution orders of sub-patterns.
(a) We choose the sub-pattern that will have the smallest result set size, and we let 1 be its execution

order. We then assign 1 to variable k.
(b) Let us assume that the execution order of sub-pattern SPj has just been decided as k. To decide the

sub-pattern of execution order k + 1, we decrease j 0 from j � 1 to 1 one by one until we find the sub-
pattern SP j0 whose execution order is not yet decided. Also, we increase j00 from j + 1 to n � 1 one by
one until we find the sub-pattern SP j00 whose execution is not yet decided.

(c) If neither SP j0 nor SP j00 exists, we conclude that the execution orders of all sub-patterns have already
been decided. Therefore, we stop the execution of the greedy algorithm. However, if SP j00 does not
exist but SP j0 does exist, then we let k + 1 be the execution order of SP j0 . On the contrary, if SP j0 does
not exist but SP j00 does exist, then we let k + 1 be the execution order of SP j00 . If both SP j0 and SP j00

exist, then we choose the one that will have a smaller result set size and let k + 1 be its execution order.
If their result set sizes will be same, then we choose the one farther from the corresponding end. That
is, if (j 0 � 1) P (n � 1 � j00), then we choose SP j0 . Otherwise, we choose SP j00 . This reduces the possi-
bility of the absence of either SP j0 or SP j00 in the next step and therefore enables us to obtain a better
combination of execution orders.

(d) We increase k by one and return to step 2(b).
In the middle of this greedy algorithm, there is a step to calculate the result set sizes of sub-patterns. The

result set size of sub-pattern SPj = hIj, Ij+1i is equal to the number of occurrences of item Ij+1 within MaxGap

after the occurrences of item Ij. The result set size of a sub-pattern can be easily obtained by using two meta

tables, FreqItems and OccCnts, whose structures were explained in Section 4.4.1. More specifically, we first
obtain the lexicographic orders of item Ij and Ij+1 by using table FreqItems. Let p and q denote their lexico-
graphic orders, respectively. We then execute the following SQL statement on table OccCnts to directly obtain
the result set size of sub-pattern SPj.
select Cntq from OccCnts where Order ¼ p:
3. Execute the sub-patterns and join their results.
According to the execution orders obtained in step 2, we execute all sub-patterns one by one while joining
their intermediate results. That is, for each k from 1 to n � 1, we execute the following steps.

(a) For the two items of the sub-pattern whose execution order is k, we find their lexicographic orders
using a meta table FreqItems. Let p and q be the lexicographic orders of the preceding item and the
succeeding item, respectively.

704 S.-W. Kim et al. / Information Sciences 178 (2008) 694–713
(b) We execute the following SQL statement on table OccTs_OccBits to obtain the result set RSk of the
sub-pattern of execution order k.

select p, OccTs, q // p and q are not column names but constants
into RSk

from OccTs_OccBitswhere Order = p and OccBits(q) = 1;

(c) We join the result set RSk with the table JRSk�1, the intermediate result set obtained by sequentially

joining all the result sets of sub-patterns of execution orders from 1 to k � 1, producing a new inter-
mediate result set JRSk. For a simpler explanation, let us rename the tables to be joined as follows. If
the sub-pattern of execution order k is on the left of the sub-patterns of execution orders from 1 to
k � 1, then we rename the sub-pattern of execution order k as TA and the intermediate result set
JRSk�1 as TB. Otherwise, we rename the sub-pattern of execution order k as TB and the intermediate
result set JRSk�1 as TA. Then, the conditions for a tuple ta of table TA to be joined with a tuple tb of
table TB are like the following:

• Join condition 1: The last item of tuple ta must be identical to the first item of tuple tb.
• Join condition 2: The gap from the timestamp of tb’s first item to the timestamp of ta’s last item

must not be larger than MaxGap.

(d) We check if the join result JRSk is empty. If so, we proceed to step 4. Otherwise, we increase k by one

and return to step 3(a).

4. Determine the occurrence or non-occurrence of a candidate pattern

We check if the final result set of step 3 is empty. If so, we conclude that the candidate pattern in consid-
eration has never occurred in this site. Otherwise, we conclude that there is at least one occurrence of the
candidate pattern in this site.

To illustrate the above algorithm, let us consider the meta tables shown in Fig. 3 and a candidate pattern
hA,B,Ci, with the assumption that MaxGap is 10. In the first step, the candidate pattern is divided into two
sub-patterns, hA,Bi, and hB,Ci. In the second step, the execution orders of two sub-patterns are decided by
calculating their result set sizes using table OccCnts. Since the result set sizes of sub-patterns hA,Bi and hB,Ci
are 2 and 1, respectively, their execution orders are determined as 2 and 1, respectively. In the third step, two
sub-patterns are executed according to their execution orders. The sub-pattern of execution order 1, which
is hB,Ci, produces RS1 = (h2,13:37:34.21,3i), and the sub-pattern of execution order 2, which is hA,Bi,
produces RS2 = (h1,13:37:32.43,2i, h1,13:38:15.21,2i). Right after obtaining RS2, we join it with JRS1, which
is the same as RS1 in this example, and obtain the final result JRS2 = (h1,13:37:32.43,2,13:37:34.21,3i).
Since the final result set is not empty, we decide that the candidate pattern hA,B,Ci occurred in this site at
least once.

4.4.3. Meta tables to quickly judge the non-occurrence of a candidate pattern

The Apriori algorithm joins frequent patterns of length n with themselves to generate candidate patterns of
length n + 1. That is, it joins two frequent patterns of length n, hI1, I2, . . . , Ini and hI2, I3, . . . , In+1i, to produce a
candidate pattern of length n + 1, CPn+1 = hI1, I2, . . . , In+1i. The lengths of candidate patterns increase succes-
sively by this self-joining process.

Let {CPn} denote the set of candidate patterns of length n delivered to the site. Also, let {CP0n} denote the
set of candidate patterns in {CPn} whose occurrences were detected in the site. Now, let us consider a sub-pat-
tern of length n + 1 (i.e., CPn+1) most recently delivered to the site. If we break CPn+1 into two sub-patterns of
length n, CPn+1[1 . . .n] and CPn+1[2 . . .n + 1], then both of them are certainly elements of {CPn}. The prereq-
uisites for CPn+1 to occur in the site are the occurrences of both CPn+1[1 . . .n] and CPn+1[2 . . .n + 1]. There-
fore, if either CPn+1[1 . . .n] 62 {CP0n} or CPn+1[2 . . .n + 1] 62 {CP0n} are satisfied, then we can quickly recognize
the non-occurrence of CPn+1 without looking up the meta tables described in Section 4.4.1.

We implement this idea by maintaining a meta table named OccCandPatt in each site. Meta table Occ-
CandPatt consists of two columns, Len and Patt. For each candidate pattern whose occurrence was detected
in the site, column Len stores its length and column Patt stores its string representation. When the site receives
a candidate pattern of length n + 1 (i.e., CPn+1), it first consults meta table OccCandPatt to detect its non-
occurrence as early as possible. The detailed procedure is as follows.

S.-W. Kim et al. / Information Sciences 178 (2008) 694–713 705
1. We break CPn+1 into two sub-patterns of length n, CPn+1[1 . . .n] and CPn+1[2 . . .n + 1].
2. We execute the two following SQL statements, producing two temporary tables TA and TB:
select * into TA from OccCandPatt
where Len = n and Patt = CPn+1[1 . . .n];
select * into TB from OccCandPatt
where Len = n and Patt = CPn+1[2 . . .n + 1];

3. If either TA or TB is empty, we declare the non-occurrence of the candidate pattern CPn+1. Otherwise, we
entrust the decision of its occurrence or non-occurrence to the algorithm described in Section 4.4.2. If its
occurrence is detected afterwards by the algorithm of Section 4.4.2, then its length and its string represen-
tation are stored into table OccCandPatt.

The above algorithm enables the swift assessment of the non-occurrence of a candidate pattern but contin-
ually increases the size of table OccCandPatt. However, note that the above algorithm requires only the can-
didate patterns of length n in order to determine the non-occurrence of a candidate pattern of length n + 1.
Therefore, when the site receives from the principal mining server a candidate pattern of length n + 1 for
the first time, it removes the candidate patterns of length n � 1 from table OccCandPatt. As a result, we do
not have to worry about the continual growth of the size of table OccCandPatt.

4.5. Discussions

4.5.1. Practicality

Over the Internet, a large number of sites exist and data may be duplicated. Applying the previous methods
directly to this environment is impractical. The performance of the method using commutative encryption and
secure sum [13] seriously deteriorates with a large number of sites. Also, with a method targeted for a vertically
distributed database environment [30], parallel processing is inapplicable since it has to perform sequential
cycling operations over distributed databases.

Rather than using a protocol with sequential cycling operations, our method forces a number of sites to
process queries sent by a mining server in a parallel fashion without any dependencies. Its total elapsed time
depends only on the site that requires the largest processing time. Therefore, our method can be applied to
situations with a large number of sites.

4.5.2. Accuracy

Network traffic data have a variety of data types. In this case, the previous methods proposed in [2,3,7,25]
suffer from inaccurate mining results because they perform data mining by using the retention replacement or
by perturbing the values in individual items. These methods can be applied only to the situations where item
types are known in advance. However, we can hardly know all the item types beforehand because there are a
large number of item types in network traffic data. Thus, the accuracy of the prior methods decreases with the
number of item types.

Our method does not suffer from this problem because it employs the N-repository server model, which
does not use retention replacement or perturbation in finding frequent items. Therefore, it is useful in cases
where item types cannot be pre-determined in advance as in network traffic data.

4.5.3. Performance

The Apriori algorithm [1] has to scan an entire database from a disk in each step to discover frequent pat-
terns. This requires a large processing overhead. Thus, considering the large amount of network traffic data to
be mined, we need an efficient mechanism to determine whether candidate items have previously occurred or
not.

To that end, our method employs meta tables that store all the pairs of frequent items, thereby quickly
determining whether candidate items have occurred without incurring disk accesses to original network traffic
data. Owing to the meta tables, the performance of the proposed method improves considerably.

In Section 5, we verify the superiority of the proposed method in all the aspects above via extensive
experiments.

706 S.-W. Kim et al. / Information Sciences 178 (2008) 694–713
5. Performance evaluation

This section shows the superiority of the proposed method via performance evaluation with extensive
experiments. Sections 5.1 and 5.2 describe the environment and parameter settings for experiments, respec-
tively. Sections 5.3–5.5 present and analyze the results.

5.1. Environment for experiments

In our experiments, we collected 5,024,295 network traffic data by using Ethereal, a program to capture
packets, during 5 days in October 2005. From them, we extracted 747,000 network traffic data related to
736 IP addresses, including the occurrence time, the status of sending or receiving, and the target address,
which are necessary for experiments involving sequential pattern mining. We used them as query and data sets.
The average inter-arrival time was 462.38 ms.

We compared the performances of three methods: Naive, OccTs, and OccTs+OccCandPatt. In order to dis-
cover the frequent itemset F1, Naive uses the retention replacement for all traffic data. Furthermore, it scans the
original traffic data sequentially to verify whether every candidate is actually frequent. OccTs discovers F1 by
using the N-repository server model. OccTs decomposes a candidate pattern into sub-patterns and then deci-
des whether a candidate pattern is frequent by joining the intermediate results obtained from searching meta

tables OccTs_OccBits and OccCnts for every sub-pattern. Finally, OccTs+OccCandPatt, which is based on
OccTs, also uses the meta table OccCandPatt to rapidly determine whether candidate patterns have ever
occurred in the site. Furthermore, both OccTs and OccTs+OccCandPatt employ a greedy algorithm to deter-
mine the execution order of sub-patterns.

As a measure for evaluating accuracy, we used Recall and Precision. Recall indicates the fraction mined
from all those that were actually frequent. Precision indicates what fraction of mined patterns are actually fre-
quent. As shown in Fig. 5, PTarget denotes a set of all frequent sequential patterns in network traffic data, and
PMined denotes a set of patterns mined by our method. Ptrue denotes a set of patterns belonging to both PTarget

and PMined, Pmissed denotes a set of patterns belonging to PTarget but not to PMined, and Pfalse denotes a set of
patterns belonging to PMined but not to PTarget. With this notation, we define Recall and Precision as follows.
Recall ¼ jP truej
jP Targetj

Precision ¼ jP truej
jP Minedj
As a performance measure, we used the average elapsed times in mining a frequent sequential pattern of the
maximum length 6. In subsequent experiments, we set probability p in retention replacement to 1 in order to
fairly evaluate the average elapsed times of all the methods.
Fig. 5. A set of patterns mined and a set of target patterns.

S.-W. Kim et al. / Information Sciences 178 (2008) 694–713 707
The hardware platform is the Pentium IV 3.0 GHz PC equipped with 512 Mbytes main memory and
80 Gbytes hard disk of 7200 RPM. The software platform is the Windows XP and the Java 2 Runtime Envi-
ronment 1.4.2.
5.2. Parameter settings

5.2.1. Minimum support

As MinSup, the minimum support, increases, the number of frequent patterns decreases rapidly, and
thereby the elapsed time decreases. Fig. 6 shows the average elapsed time and the number of frequent patterns
in performing experiments by the three methods by changing MinSup for 10 sites that store 1000 network traf-
fic data. Here, we set the maximum time interval MaxGap to 20. The result of this experiment shows that, in
all three methods, the average elapsed time decreases as MinSup increases.

In particular, with Naive, the number of frequent patterns extracted is almost proportional to the elapsed
time because Naive determines whether a pattern is frequent or not by accessing the original data itself. Also,
the elapsed time of the proposed OccTs+OccCandPatt is larger than that of OccTs when MinSup is 0.1. A
pattern occurring even in only one site also could be also regarded as frequent and is stored in a meta table
OccCanPatt. As done previously, all patterns appearing in each site are stored in the meta table OccCanPatt.
Thus, the size of the meta table becomes excessively large. However, when MinSup is more than 0.2, the pro-
posed OccTs+OccCandPatt performs 1.47 to 2.97 times better than Naive and 1.07 to 1.09 times better than
OccTs. Thus, we set MinSup to 0.2 as basic value in subsequent experiments.
5.2.2. Maximum time interval

As the maximum time interval, MaxGap, increases, the elapsed time becomes larger since the number of
patterns belonging to the time interval increases. Fig. 7 shows the elapsed time and the number of frequent
patterns for experiments with different MaxGap for 10 sites, each of which stores 1000 network traffic data.
Here, we set MinSup to 0.2.

The results show that the elapsed time of the proposed OccTs and OccTs+OccCandPatt is somewhat larger
than that of Naive when MapGap is 0. With a tiny MaxGap, the number of frequent patterns is small. In this
case, time is mainly spent in constructing the meta table OccTs rather than in finding frequent patterns.

However, as MaxGap increases, OccTs and OccTs+OccCandPatt perform better than Naive in proportion
to the number of frequent patterns. More specifically, OccTs+OccCandPatt outperforms Naive by 1.45–2.39
times, and outperforms OccTs 1.02–1.09 times. We set MaxGap to 20 as a basic value for subsequent
experiments.
Fig. 6. The elapsed time and the number of frequent patterns with different minimum supports.

Fig. 7. The elapsed time and the number of frequent patterns with different maximum time intervals.

708 S.-W. Kim et al. / Information Sciences 178 (2008) 694–713
5.2.3. Numbers of sites and servers

The methods proposed in this paper are all applicable to the parallel processing environment. Fig. 8 shows
the elapsed time with different numbers of sites and servers. Each site stored 1000 network traffic data, and
thus 10 sites stored 10,000 network traffic data in total. In the cases of 20, 30, 40, and 50 sites, we stored
20,000, 30,000, 40,000, and 50,000 traffic data, respectively, in total. We set MinSup to 0.2 and MaxGap to 20.

The results show that all the three methods are hardly affected by the numbers of sites and servers. Because
mining is performed on the same traffic data, the number of frequent patterns is identical even with different
numbers of sites and servers. The results reveal that OccTs+OccCandPatt performs 2.34 and 1.06 times better
than Naive and OccTs, respectively. We set the numbers of sites and servers to 10 and 5, respectively, in the
following experiments.
5.3. Analysis of accuracy

In order to evaluate the accuracy of the proposed N-repository server model, we compared Recall and Pre-

cision of OccTs and Naive. Because the accuracy of both OccTs and OccTs+OccCandPatt is the same, we show
only Naive and OccTs. In this experiment, we set MinSup, MaxGap, and the number of servers to 0.2, 20, and
5, respectively, as described in Section 5.2.

Firstly, we evaluated Recall and Precision with different numbers of sites. Here, we set probability p to 0.9.
Fig. 9 shows the results.
Fig. 8. The elapsed time with different numbers of sites and servers.

Fig. 9. The Recall and Precision with different numbers of sites.

S.-W. Kim et al. / Information Sciences 178 (2008) 694–713 709
We see that in both Naive and OccTs Recall and Precision all increase as the number of sites increases. Both
methods employ the retention replacement to find sequential patterns whose length is longer than 2. With
retention replacement, the greater the number of sites, the higher the accuracy. OccTs outperforms Naive
1.01–1.04 times in Recall and 1.01–1.32 times in Precision. This is because the N-repository server model used
in OccTs enables the exact identification of all frequent patterns.

Next, we examine Recall and Precision with a different probability p. We set the number of sites to 50.
Fig. 10 shows the results with p set from 0.51 to 1. We note that the retention replacement is inapplicable with
a p of 0.5 [25].

The results show that in Naive and OccTs both Recall and Precision increase as p gets nears 1. This is due to
the retention replacement used in both methods to find frequent sequential patterns whose length is longer than
1. OccTs performs 1.04–1.20 and 1.01–1.12 times better than Naive in Recall and Precision, respectively.

Naive is inapplicable for analyzing real Internet traffic data because it must know all items that are
likely to occur in advance. Furthermore, in the above two experiments, OccTs showed accuracy higher
than Naive.

5.4. Analysis of performance

In order to evaluate the performance of OccTs and OccTs+OccCandPatt, we compared them with Naive in
terms of the elapsed time for mining. In this experiment, we set MinSup, MaxGap, the number of sites, and the
number of servers to 0.2, 20, 10, and 5, respectively, by considering the experimental results in Section 5.2.

We measured the elapsed time with different numbers of traffic data in each site. Fig. 11 shows the results.
In all three methods, we observe that as the volume of traffic data increases, the elapsed time increases. This

is because more frequent patterns appear with a larger volume of traffic data. OccTs performed 1.60–2.38
Fig. 10. Recall and Precision with different probability p.

Fig. 11. The elapsed time with different numbers of traffic data.

710 S.-W. Kim et al. / Information Sciences 178 (2008) 694–713
times better than Naive. It stores all pairs of frequent items that occur within MaxGap into the meta table
OccTs_OccBits and quickly determines whether candidate patterns occur by joining these pairs without
accessing the network traffic data.

OccTs+OccCandPatt ran 1.01–1.10 times faster than OccTs. By referring to OccCandPatt, the method
examines whether candidate patterns have ever occurred in the site before searching OccTs_OccBits. There-
fore, it achieves a pruning effect in the mining process. That is, the total elapsed time decreases because the
number of candidate patterns to be searched in OccTs_OccBits decreases. Fig. 12 shows the pruning effect
obtained by using OccCandPatt. As the volume of traffic data increases, the pruning effect grows considerably.
The pruning effect of OccCandPatt is 77–81% bigger than that of OccTs.

Table 4 shows an example of sequential patterns discovered in our experiment for network traffic data. The
second pattern implies that printing was usually done after receiving an E-mail. Similarly, the fourth pattern
implies that a dialogue via a messenger is common after web surfing.
Fig. 12. Pruning effect of using OccCandPatt.

Fig. 13. The size of meta tables.

Table 4
Example of sequential patterns discovered in the experiment

Sequence Sequential pattern

1 In, E-mail server ! out, E-mail server
2 In, E-mail server ! out, Printer server
3 In, E-mail server ! out, Messenger
4 In, Web server ! out, Messenger ! in, Messenger
5 In, Web server ! out, E-mail server ! in, E-mail server ! out, Web server ! in, Messenger

S.-W. Kim et al. / Information Sciences 178 (2008) 694–713 711
5.5. Size of meta tables

To evaluate the extra storage overhead of OccTs, we measured the ratio of the size of meta tables to that of
the original data. In this experiment, we set MinSup, MaxGap, the numbers of sites, and the numbers of serv-
ers to 0.2, 20, 10, and 5 by considering the results shown in Section 5.2.

The most important factors considered in determining the size of the meta tables are the number of frequent
items and the frequency of each frequent item in a site. The number of frequent items is affected by MinSup

and the volume of traffic data. Fig. 13 shows the size of the meta tables compared with that of the original data
with respect to changing MinSup and the number of traffic data. In the left graph, the size of the meta tables is
affected by the number of frequent items, thereby becoming 0.76–1.42 times that of the original data. In the
right graph, we see that the frequency of each frequent item and the number of frequent items increase
together and that the effect is bigger than MinSup. The ratio of the size of the meta tables to that of the original
data changes 1.06–3.19.

6. Conclusions and further study

In this paper, we have proposed a practical method for sequential pattern mining on network traffic data.
The proposed method preserves privacy of sites and provides high accuracy of mining results. The contribu-
tions of the paper are summarized as follows: First, we have proposed a privacy preserving method that mines
frequent sequential patterns from network traffic data. Our method uses the N-repository server model that
operates as a single mining server and also employs the retention replacement technique that changes the
answer by a given probability. Second, we have designed meta tables maintained in each site so as to quickly
determine whether candidate patterns ever occurred in the site. Third, we have demonstrated the correctness
and the efficiency of the proposed method via extensive experimentation with real-world network traffic data.

With the proposed method, we can discriminate the intruded state from the normal state by analyzing net-
work traffic data. This makes it possible to identify sequential patterns that frequently occur only with intru-
sions, thereby helping to prevent intrusions. In particular, internet worms can affect intrusion traffic of the

712 S.-W. Kim et al. / Information Sciences 178 (2008) 694–713
same pattern over a large number of infected personal computers. Thus, the proposed method would be fairly
useful in detecting these kinds of intrusions automatically.

The proposed method is applicable to mining sequential visiting patterns of web pages that occur fre-
quently. The results can be used in the pre-fetching of web pages and load balancing of web servers. By using
frequent sequential visiting patterns of web pages, the server can predict web pages to be accessed together and
thus pre-fetch those pages to reduce their access time. Also, by distributing those web pages into multiple web
servers, the servers process information more quickly due to the load balancing effect.

In bioinformatics, there have been many attempts to derive useful biomedical information, such as physical
examinations results, laboratory results, disease histories, and medication records. Such information is
extracted by joining the results of queries issued in distributed heterogeneous platforms. Recently, there have
been many active research efforts in performing such combinations efficiently while preserving patient privacy
[11,26]. The method proposed here is beneficial to this application.

In a future study using bio-medical information obtained from a heterogeneously distributed network envi-
ronment, we will derive sequential patterns in disease progression, specific drug responses, disease prognoses,
and gene expression profiles. We will also develop a cooperative bio-medical system that is capable of assisting
doctors’ decision-making process in the prediction and diagnosis of diseases by using such information.

In addition, to increase the applicability of our proposed method, we are considering extending it to a
dynamic environment where online network traffic data are reflected in the mining process in real-time.
References

[1] R. Agrawal, R. Srikant, Mining sequential patterns, in: Proceedings of the 11th IEEE International Conference on Data Engineering,
Taipei, Taiwan, 1995, pp. 3–14.

[2] R. Agrawal, R. Srikant, Privacy-preserving data mining, in: Proceedings of 2000 ACM SIGMOD International Conference on
Management of Data, Dallas, Texas, 2000, pp. 439–450.

[3] R. Agrawal, R. Srikant, D. Thomas, privacy preserving OLAP, in: Proceedings of 2005 ACM SIGMOD International Conference on
Management of Data, Baltimore, Maryland, 2005, pp. 251–262.

[4] J. Ayres, J. Flannick, J. Gehrke, T. Yiu, Sequential pattern mining using bitmap representation, in: Proceedings of the 8th ACM
SIGKDD International Conference on Knowledge Discovery and Data Mining, Alberta, Canada, 2002, pp. 102–111.

[5] C. Clifton, D. Marks, Security and privacy implication of data mining, in: Proceedings of 1996 ACM Workshop on Data Mining and
Knowledge Discovery, Montreal, Canada, 1996, pp. 15–19.

[6] P. Dokas, L. Ertoz, V. Kumar, A. Lazarevic, J. Srivastava, P. Tan, Data mining for network intrusion detection, in: Proceedings of
the NSF Workshop on Next Generation Data Mining, Baltimore, Maryland, 2002, pp. 73–81.

[7] A. Evfimievski, R. Srikant, R. Agrawal, J. Gehrke, Privacy preserving mining of association rules, in: Proceedings of 2002 ACM
SIGKDD International Conference on Knowledge Discovery and Data Mining, Edmonton, Canada, 2002, pp. 217–228.

[8] T. Fukasawa, J. Wang, T. Takata, M. Miyazaki, An effective distributed privacy-preserving data mining algorithm, in: Proceedings of
the 5th International Conference on Intelligent Data Engineering and Automated Learning, Exeter, UK, 2004, pp. 320–325.

[9] M. Garofalakis, R. Rastogi, K. Shim, SPIRIT: sequential pattern mining with regular expression constraints, in: Proceedings of the
25th International Conference on Very Large Data Bases, Edinburgh, UK, 1999, pp. 223–234.

[10] J. Han, J. Pei, B. Mortazavi-Asl, Q. Chen, U. Dayal, M. Hsu, FreeSpan: frequent pattern-projected sequential pattern mining, in:
Proceedings of the 6th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, Boston, Massachusetts,
2000, pp. 355–359.

[11] J. Han, How can data mining help bio-data analysis?, in: Proceedings of the 2nd ACM SIGKDD Workshop on Data Mining in
Bioinformatics, Edmonton, Canada, 2002, pp. 1–2.

[12] Y. Hu, B. Panda, A data mining approach for database intrusion detection, in: Proceedings of 2004 ACM Symposium on Applied
Computing, New York, NY, 2004, pp. 711–716.

[13] M. Kantarcioglu, C. Clifton, Privacy-preserving distributed mining of association rules on horizontally partitioned data, in:
Proceedings of 2002 ACM SIGMOD Workshop on Research Issues on Data Mining and Knowledge Discovery, Madison,
Wisconsin, 2002, pp. 24–31.

[14] H. Kum, J. Pei, W. Wang, D. Duncan, ApproxMAP: approximate mining of consensus sequential patterns, in: Proceedings of the 3rd
SIAM International Conference on Data Mining, San Francisco, California, 2003, pp. 311–315.

[15] W. Lee, S. Stolfo, K. Mok, A data mining framework for building intrusion detection models, in: Proceedings of the IEEE
Symposium on Security and Privacy, Oakland, California, 1999, pp. 120–132.

[16] Y. Lindell, B. Pinkas, Privacy preserving data mining, in: Proceedings of the 20th Annual International Cryptology Conference on
Advances in Cryptology, Santa Barbara, California, 2000, pp. 36–54.

[17] M. Lin, S. Lee, Improving the efficiency of interactive sequential pattern mining by incremental pattern discovery, in: Proceedings of
the 36th Annual Hawaii International Conference on System Sciences, Washington, DC, 2003, p. 68.2.

S.-W. Kim et al. / Information Sciences 178 (2008) 694–713 713
[18] Y. Liu, S. Sung, H. Xiong, A cubic-wise balance approach for privacy preservation in data cubes, Information Sciences 176 (9) (2006)
1215–1240.

[19] J. Luo, S. Bridges, Mining fuzzy association rules and fuzzy frequency episodes for intrusion detection, International Journal of
Intelligent Systems 15 (8) (2000) 687–704.

[20] F. Masseglia, F. Cathala, P. Poncelet, The PSP approach for mining sequential patterns, in: Proceedings of the 2nd European
Symposium on Principle of Data Mining and Knowledge Discovery, Nantes, France, 1998, pp. 176–184.

[21] F. Masseglia, P. Poncelet, M. Teisseire, Incremental mining of sequential patterns in large databases, Data and Knowledge
Engineering 46 (1) (2003) 97–121.

[22] J. Pei, J. Han, W. Wang, Mining sequential patterns with constraints in large databases, in: Proceedings of the 11th International
Conference on Information and Knowledge Management, McLean, Virginia, 2002, pp. 18–25.

[23] J. Pei, J. Han, B. Mortazavi-Asl, J. Wang, H. Pinto, Q. Chen, U. Dayal, M. Hsu, Mining sequential patterns by pattern-growth: the
prefixspan approach, IEEE Transactions on Knowledge and Data Engineering 16 (11) (2004) 1424–1440.

[24] B. Pinkas, Cryptographic techniques for privacy-preserving data mining, SIGKDD explorations Newsletter of the ACM Special
Interest Group on Knowledge Discovery and Data Mining 4(2) (2002) 12–15.

[25] S. Rizvi, J. Haritsa, Maintaining data privacy in association rule mining, in: Proceedings of the 28th International Conference on Very
Large Data Bases, Hong Kong, China, 2002, pp. 682–693.

[26] G. Schadow, S.J. Grannis, C.J. McDonald, Discussion paper: privacy-preserving distributed queries for a clinical case research
network, in: Proceedings of the IEEE ICDM Workshop on Privacy, Security, and Data Mining, Maebashi City, Japan, 2002, Vol. 14,
pp. 55–65.

[27] S. Song, Z. Huang, H. Hu, S. Jin, A sequential pattern mining algorithm for misuse intrusion detection, in: Proceedings of the
International Workshop on Information Security and Survivability for Grid, Wuhan, China, 2004, pp. 458–465.

[28] R. Srikant, R. Agrawal, Mining sequential patterns: generalizations and performance improvements, in: Proceedings of the 5th
International Conference on Extending Database Technology, Avignon, France, 1996, pp. 3–17.

[29] X. Yan, J. Han, R. Afshar, CloSpan: mining closed sequential patterns in large databases, in: Proceedings of the 3rd SIAM
International Conference on Data Mining, San Francisco, California, 2003, pp. 166–177.

[30] J. Zhan, L. Changy, S. Matwinz, Privacy-preserving collaborative sequential pattern mining, in: Proceedings of the SIAM
International Workshop on Link Analysis, Counter-terrorism, and Privacy, Lake Buena Vista, Florida, 2004. pp. 61–72.

[31] Q. Zheng, K. Xu, W. Lv, S. Ma, The algorithms of updating sequential patterns, in: Proceedings of the 5th SIAM International
Workshop on High Performance Data Mining, Arlington, Virginia, 2002.

[32] S. Zhong, Privacy-preserving algorithms for distributed mining of frequent itemsets, Information Sciences 177 (2) (2007) 490–503.

	Privacy preserving data mining of sequential patterns for network traffic data
	Introduction
	Related work
	Problem definition
	Proposed method
	Overall mining process
	Finding frequent items using N-repository server model
	Finding frequent patterns longer than one
	Meta tables to quickly determine the occurrence or non-occurrence of candidate patterns
	Meta tables for storing pairs of items satisfying MaxGap
	Determining the occurrences or non-occurrences of candidate patterns
	Meta tables to quickly judge the non-occurrence of a candidate pattern

	Discussions
	Practicality
	Accuracy
	Performance

	Performance evaluation
	Environment for experiments
	Parameter settings
	Minimum support
	Maximum time interval
	Numbers of sites and servers

	Analysis of accuracy
	Analysis of performance
	Size of meta tables

	Conclusions and further study
	References

