



Abstract— Flash memory based Solid-State Disks(SSDs) are

currently being considered as a promising candidate for

replacing hard disks, due to several superior features such as

significantly shorter access time, lower power consumption and

better shock resistance. SSDs, however, have some drawbacks as

well, including the slow write time for random-writes and

limited erase-count of a block. In order to improve write

throughput, SSDs take advantage of inter-leaving method, which

writes data on several NAND-flash chips in parallel. For

interleaving method being applied, the granularity of

write-operations is increased to as many blocks as up to the

number of flash memory chips constituting a SSD, and therefore

the logical block size is increased according to the increased

granularity. Increase of write-operation granularity results in

some problems. Even small-size write-operations cause many

blocks to be erased at the increased granularity. Consequently,

the limited erase-count of a block is consumed fast. Specifically,

a certain block consisting of a logical block can be worn out

faster than the other blocks of the logical block, when

wear-leveling techniques are performed on logical blocks. In

order to address these problems caused by the large logical block

size, we propose a novel method named dual address mapping

that perform a write operation at the unit of a block as well as a

logical block and manages not only erase counts of logical blocks

but also those of blocks.

I. INTRODUCTION

lash memory is a non-volatile semiconductor with shock

resistance, low power consumption and small sizes [9].

Reflecting these superior characteristics, recent mobile

devices such as mobile phones, PDAs, MP3 adopted flash

memory as their storage media. Moreover the advent of flash

based-SSDs (Solid-State Disks) is hastening to replace hard

disks with SSDs, not only in personal computers but even in

enterprise servers [10]. Besides these characteristics, SSD has

faster data processing speed with no mechanical access time

than hard disks. Due to these superior characteristics and the

trend that SSD is becoming to have bigger capacity and

cheaper price, it is expected that SSDs will replace the hard

disks in the near future [7].

 Table 1 shows terminologies used in this paper. A flash

memory chip is constituted with many blocks, and one block is

constituted with several pages [10]. Page is the basic unit of

read and write operations. Figure 1 shows this structure of

J. Lee is with the Computer Science Department, Yonsei University,

Seoul, Korea (corresponding author to provide phone: 82-2-2123-7757, fax:

82-2-365-2579, e-mail: sppong@cs.yonsei.ac.kr).

H. Roh is with the Computer Science Department, Yonsei University,

Seoul, Korea (e-mail: fallsmal@cs.yonsei.ac.kr).

S. Park is with the Computer Science Department, Yonsei University,

Seoul, Korea (e-mail: sanghyun@cs.yonsei.ac.kr).

flash memory. About 128bytes of spare area per page exists on

flash memory in order to store a sort of meta-data of data

pages [3].

 Flash memory has a peculiarity which is the difference

between the granularities of a read, write, and erase operation.

Because flash memory cannot execute in-place update, the

difference of granularity between read, write, and erase

operation is one of drawbacks of flash memory [6]. To

perform an update operation, existing data in block should be

eliminated before writing a new data or a new data should be

stored in another free block. However, because of erase count

of each block being limited from ten thousands to one million

[5], the difference of the erase count between each block

should be considered when storing data. That is, a technique

that divides data evenly among all blocks should be applied

and this technique is called wear-leveling. Consumed erase

count of each block is stored in spare area, and wear-leveling

technique exploits this information. This spare area also stores

ECC (Error Correcting Code) for preventing occurable errors

when data is read [3].

 In flash memory, write latency for 2KB page, about 200μs,

are much slower than read latency which is about 25μs [2]. To

complement these drawbacks, the SSD has been developed as

a permanent storage media that provide higher write

throughput and larger storage space, by chunking several flash

chips and using new mapping technologies. As shown in

figure 2, the SSD controller receives data from the host

interface, and then data is transferred to flash memory

Dual Address Mapping Method for Efficient Wear-Leveling of

SSDs

Jiwon Lee, Hongchan Roh, and Sanghyun Park

F

TABLE 1

TERMINOLOGIES USED IN THIS PAPER

Notation Description

Page granularity of a read and write operation

Block granularity of a erase operation

Logical block concept to manage several blocks together

Free block write-possible block

Fig. 1. Structure of NAND-flash memory chip

mailto:sppong@cs.yonsei.ac.kr

interface through the data bus channel linked to host interface.

Writing performance can be enhanced by using inter-leaving

method, which makes it possible for the SSD controller to

simultaneously write data on the flash memory chips in

parallel [2]. Several blocks have to be joined together in one

logical block so that the inter-leaving method efficiently

works. However, the large size of a logical block causes

several problems. Update operation smaller than the size of

logical block makes other data that has not been updated

copied. These unnecessary write operations accompanied by

later erase operations can make write performance slower and

erase-count consumed faster [2]. Moreover, these also make

the difference between each block’s erase-count in the same

logical block. Therefore, if a certain block is worn out

significantly faster than the others, then the entire logical

block containing the prematurely aged block will not be used

as the storage area by the SSD controller, wasting the other

blocks.

 In this paper, we propose a new method which can cope

with these problems caused by logical block being larger. Our

method provides concrete techniques that perform a write

operation at the granularity of a block as well as a logical

block, and maintain not only the erase-count of each logical

block but the erase count of each block consisting of the

logical block.

The rest of the paper is organized as follows. Related work is

presented in Section 2. Section 3 describes the proposed

method of address mapping. We estimate performance of dual

address mapping method in section 4.We conclude in Section

5.

II. RELATED WORK

Sandisk, a company producing flash memory chips and

SSDs, made an application for a patent that includes

wear-leveling technique. This maintains several blocks as one

logical block named a bank [4]. In this patent, averages of

erase counts of blocks that each bank contains are stored in

each bank. A method that made the erase counts of blocks not

be widen was proposed. This paper named the bank which has

largest erase count 'max bank', and the smallest 'min bank'.

When a certain condition is satisfied, a max bank is switched

to a spare bank which is a saved bank in order to prevent a gap

between erase counts from dilating. Before switching a max

bank with a spare bank, data of max bank are copied to spare

bank, and the max bank is erased for making the space free to

write. This process makes the spare bank have the largest

erase count of all the banks. If erase count of a max bank is

greater than a spare bank by a certain threshold value, the max

bank is switched with the spare bank. However, this patent has

a problem that any block of the bank can be worn out fast,

since erase count of blocks belong to the same bank isn’t

considered,.

 MTRON, another company producing SSD, proposed the

HYDRA architecture. This architecture can execute write

operations fast by using inter-leaving method and using

buffering method [2]. Buffering method is adopted so that

small-size write operations are collected in the buffer and later

the gathered data can be flushed at the same time. Buffering

method complements the weak point of SSDs caused by

small-size write operations. Small and random writes,

however, still degrade write performance, and data in buffer

can be lost by system crashes.

III. DUAL ADDRESS MAPPING METHOD

To address aforementioned shortcomings of SSDs, we

suggest dual address mapping method.

 The proposed method has two major purposes. First, we

made an effort to deal with drawbacks regarding small-size

write by supporting both logical block-based write operation

and block-based write operation. Larger logical blocks

accompanied with inter-leaving method enhances write

throughput in case of sequential writes, but no write

performance enhancement can be expected when small-size

and random write operations dominates the workload pattern.

When small-size and random write operations occurred, all

the data including not only updated data by the write

operations but also other data that has not been updated have

to be copied to a new logical block. Therefore, we designed

Fig. 2. General structure of SSD

dual address mapping method to enable for block based

writing not to copy all the data under small-size write

operations. Second, in order to prevent erase-count of blocks

not be widen, dual address mapping method applies

wear-leveling technique on each block. Most previous studies

haven’t considered the erase count of each block consisting of

a logical block but the erase count of the logical block.

However, the proposed method prevents any block of logical

block worn out earlier than the other blocks by considering the

erase count of each block that belongs to the logical block.

 In dual address mapping method, an average of erase

counts of the blocks consisting of each logical block is

calculated and loaded into RAM of SSD controller when

system is initialized. Next, the number of free blocks in each

logical block which can be written is loaded into in RAM.

Figure 3 illustrates the process in which the information of all

the logical blocks is stored in RAM in the SSD controller

consisting of four flash memory chips. The form of the

information is represented as (an erase count, the number of

free blocks). Writing process is divided into two steps, logical

block-based and block-based writing. The process of writing

is presented in Algorithm 1.

 If the data size for a writing operation is larger than or is the

same as the logical block size, logical block-based writing

process is performed. The number of required logical blocks

for a write operation, NL, can be represented as equation (1),

where SW, SL, and SB denotes the data size for a write operation,

logical block size, and block size, respectively.

 (1)

 After performing logical block-based writing, remaining

data also have to be written. The size of remaining data for the

write operation is calculated as the following equation.

 (2)

Through the equation (2), it can be confirmed that the size

of remaining data is always smaller than SL. This remaining

data is written by block-based writing process to address

small-size write problems. NB denotes the number of required

blocks for the write operation. NB can be calculated as

equation (3).

 (3)

 The write operations are performed, according to the

number of required logical blocks, NL, and that of required

blocks, NB, which are derived by equation (1) and (3). Logical

blocks and blocks to be written are located by the information

of logical blocks stored in RAM. The logical blocks required

Algorithm 1.

Process of writing operation

1: Calculate the number of required logical block and the

 number of required block denoted as M and N

2: Choose M logical blocks satisfying two conditions

3: while (N <=0)

4: Choose target logical block that has free blocks and its

 erase count is the smallest among all the logical blocks

5: Set T as the number of free blocks belong to the target

 logical blocks

6: if(T > N)

7: Load erase count of free blocks into RAM

8: Perform block-based write processes in increasing

 order of the free blocks’ erase counts N times

9: else

10: Perform block-based write processes T times

11: N = N - T

 LWL SSN /

  LLWW SSSS  /

    SBSSSSNB LLWW // 

Fig. 3. Process of initializing system

Fig. 4. Process of logical block-based writing operation

Fig. 5. Process of block-based writing operation

for write operations are computed satisfying two conditions:

First, every block included in a logical block should be a free

block. Second, the logical block which has the smallest erase

count has the highest priority to be written. These are

represented as step 1 and 2 in Algorithm 1. Figure 4

demonstrates the process of logical block-based writing when

eleven blocks are required to be written on SSDs. Since one

logical block contains four blocks, logical block-based writing

is performed on eight blocks of required blocks. Following the

aforementioned conditions, two logical blocks each of which

has four free blocks along with higher priority than others are

written.

To handle the remaining data after performing logical

block-based writing, block-based writing process is executed.

Before carrying the process, a target logical block should be

chosen first. The target logical block has to satisfy two

constraints: First, it should have enough free blocks. Second

its erase count has to be the smallest among all the logical

blocks in the aspect of wear-leveling. When the number of

free blocks that belong to the target logical block is less than

NB, all the free blocks of the target logical block are written.

The above process is performed until the number of free

blocks that belong to the target logical block is larger than that

of the remaining blocks. On the other hand, when the number

of remaining blocks is less than that of the free blocks that

belong to the target logical block, the free blocks of the target

logical block are written in increasing order of the free blocks’

erase counts. The step 3 to 11 of Algorithm 1 explains

block-based writing process. Figure 5 shows the steps of

block-based writing process for the remaining data after the

logical block-based writing process is performed. The three

remaining blocks are also written on the target logical block

which has free blocks and the smaller erase count than any

other logical blocks. As shown in ① of Figure 5, only one free

block exists on the logical block having the smallest erase

count whereas three blocks to be written are left. Therefore,

write operations are performed as shown in ② of Figure 5.

Since two blocks still remain, another target logical block has

to be chosen. The new target logical block has three free

blocks, so the two of them, which are the blocks having the

first and second smallest erase count, are written. The step ③

of Figure 5 demonstrates the process of reading free blocks'

information in order to choose two blocks to be written. The

step ④, ⑤, and ⑥ show the process in which the chosen two

blocks are written.

 Dual address mapping method can complement the

drawbacks of SSDs regarding small-random writes by

providing block-based writing process as well as logical

block-base writing process. Besides, this can address the

problem that a certain block is worn out faster than others, as

well.

IV. PERFORMANCE EVALUATION

For there is no mapping algorithm for SSD publically

available, it is difficult to evaluate the performance by

comparing the proposed method with other SSD mapping

algorithms. Also, adjusting internal logic of SSD is difficult.

Because of these reasons, we chose the evaluation method that

estimates the performance of dual address mapping method by

theoretical analysis. Logical block-based mapping algorithm,

block-based mapping algorithm and log-structured mapping

algorithm of flash memory are compared in the analysis. Table

2 shows the performance comparison between dual address

mapping and other mapping algorithms.

If N blocks are required to be written, N can be represented

as (4).

 (4)

In formula (4), kA represents the number of required blocks

to perform logical block-based writes and B represents that to

perform block-based writes, where k is the number of flash

memory chips consisting of SSD. Besides them, A denotes the

number of logical block-based writes and B is always smaller

than k.

Compared with the mapping algorithm which manages

only the unit of logical block, the proposed method has the

outstanding merit in the aspect of small-random write. k(A+1),

the number of needed block on logical block-based sequential

write, is greater than kA+B, the number of needed block on

sequential write of the proposed method. On the other hand,

A+1, which denotes the number of memory accesses by

logical block-based sequential write, is less than A+B, which

denotes the number of memory accesses by the proposed

method, in worst case. Consequently, the sequential write

performance of logical block-based mapping algorithms and

the proposed method are approximately the same. In the view

point of small-random writes, however, the difference of

performance is much clear. For enhancement of write

performance to small-random writes, the buffer size should be

expanded. As the proposed method supports block-based

writing, the buffer size can be smaller than that of logical

block-based mapping algorithm, and unnecessary writes and

erase operations accompanied by small size updates can be

reduced to up to 1/k.

Compared with the mapping algorithms which manage

TABLE 2

PERFORMANCE COMPARISON WITH OTHER ALGORITHMS

BkAN 

only the unit of block, the proposed method has advantages in

some aspects. First of all, the main memory usage to store

logical-to-physical mappings can be considerably reduced as

far as 1/k, since meta data of all the blocks on block-based

mapping algorithm should be loaded into the main memory.

For sequential reads and writes, dual address mapping method

also has better performance. This requires A+B memory

accesses, whereas block-based mapping algorithm requires

kA+B memory accesses. The performance of small-random

writes on these two algorithms is almost the same.

Dual address mapping algorithm can be compared with

log-structured mapping algorithm applied in flash memory

such as BAST [8], FAST [6]. Since BAST and FAST are

designed for flash memory, these have to be adapted to the

SSD architecture. Log-structured mapping algorithm includes

log blocks in order to store logs. Therefore, the entire capacity

of SSDs where data can be stored is decreased as much as the

total size of log blocks. Since log-structured mapping

algorithms stores updated data into log blocks by page unit,

given small-random write operations, these methods exhibit

seemingly better performance than dual address mapping,

however. On the other hand, the adoption of the log blocks

accompanies merge operations that select useful data from

data block and logical block, and then copy them into another

data block so that they can recycle them as free blocks for

future write operations. This leads performance degradation

of log-structured mapping algorithms. Likewise, read

performance of these methods is expected to be lower than

dual address mapping due to the fact that one data block and

log block have to be read together per a read request.

V. CONCLUSION

Flash memory based Solid-State Disks(SSDs) are expected

to gradually replace hard-disks. Flash memory has fast data

processing speed without mechanical access time, low power

consumption, and shock-resistance. To improve write

performance, SSDs employ inter-leaving method which can

simultaneously write several data in parallel. However,

inter-leaving method makes logical block larger. This larger

logical block causes write performance degradation by

non-necessary copy operations. SSDs have another problem

that a certain block that belongs to a logical block can be worn

out fast. To address these problems of SSDs, we propose the

dual address mapping method, which can manage not only

logical blocks but blocks. The proposed method enhances

write performance by providing block-based writing as well as

logical block based writing. This also alleviates the problem

that a certain block that belongs to a logical block is worn out

earlier than others, by considering the erase count of a block as

well as that of a logical block.

 As future work, we are planning to design a more efficient

system by considering more various performance factors of

SSDs such as RAM size and garbage collection operations.

REFERENCES

[1] Hongseok Kim et al., "Development Platforms for Flash Memory Solid

State Disks", IEEE ISORC, pp. 527~528, 2008

[2] Young-Hyun Bae, “Design of A High Performance Flash

Memory-based Solid State Disk”, KIISE, Vol 25, No. 6, pp. 18~28,

2007

[3] Nitin Agrawal et al., "Design Tradeoffs for SSD Performance",

USENIX, pp. 57~70, 2008

[4] Karl M. J. Lofgren, "Wear Leveling Techniques for Flash EEPROM

Systems", United State Patent, No. 6,230,223, 2001

[5] Eran Gal et al., "Algorithms and Data Structures for Flash Memories",

CSUR, Vol 37, No. 2, pp. 138~163, 2005

[6] Sang-Won Lee et al., "A Log Buffer-Based Flash Translation layer

Using Fully-Associative Sector Translation", ACM Transactions on

Embedded Computing Systems, Vol 6, No. 3, Article 18, 2007

[7] Goetz Graefe, Hewlett-Packard Laboratories, "The Five-Minute Rule

20 Years Later: and How Flash Memory Changes the Rules", ACM

QUEUE, Vol 6, Issue 4, pp. 40~52, 2008

[8] Jesung Kim et al., “A Space-Efficient Translation Layer for

Compactflash Systems”, IEEE Transactions on Consumer Electronics,

Vol 48, No. 2, 2002

[9] Jeong-Uk Kang et al., “A Superblock-based Flash Translation Layer for

NAND Flash Memory”, Proceedings of the 6th ACM & IEEE

International conference on Embedded software, pp. 161~170, 2006

[10] Aayush Gupta et al., “DFTL : A Flash Translation Layer Employing

Demand-based Selective Caching of Page-level Address Mappings”,

Proceeding of the 14th international conference on Architectural

support for programming languages and operating systems, pp.

229~240, 2009

