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Over the past several decades, biologists have conducted numerous studies examining both general and specific 
functions of proteins. Generally, if similarities in either the structure or sequence of amino acids exist for two 
proteins, then a common biological function is expected. Protein function is determined primarily based on the 
structure rather than the sequence of amino acids. The algorithm for Protein Structure Alignment is an essential 
tool for the research. The quality of the algorithm depends on a quality of the similarity measure that is used. 
This is because the similarity measure is an objective function used to determine the best alignment. However, 
none of similarity measures became golden standard because their individual strength and weakness.  It was 
derived excessive filtering to find a single solution. In this paper, we introduce a new strategy that finds not a 
single solution, but multiple solutions with different lengths. This method has obvious benefits of high quality 
alignment. However, this novel method leads to a new problem that the running time for this method is 
considerably longer than that for methods that find only a single solution. To address this problem, we propose 
algorithms that can locate a COmmon REgion (CORE) of multiple solutions candidates, and can then extend the 
CORE into multiple solutions. Because the CORE can be defined from a final alignment, we introduce CORE* 
that is similar to CORE and propose an algorithm to identify the CORE*. By adopting CORE* and DP, our 
proposed method produces multiple solutions of various lengths with higher accuracy than previous methods.   

Keywords: protein structure, structure alignment, sequence alignment, similarity search 

1. INTRODUCTION 

Over the past several decades, biologists have conducted numerous studies examining 
both general and specific functions of proteins [1]. However, due to the time and effort 
required for the experimental methods employed by biologists, there are numerous 
limitations to these approaches exist in analyzing protein functions. As such, automated 
computer systems have recently been developed to analyze the functions of multiple 
proteins simultaneously [2]. 

  Generally, if similarities in either the structure or sequence of amino acids exist for two 
proteins, then a common biological function is expected [3]. Protein function is 
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determined primarily based on the structure rather than the sequence of the amino acids 
that compose it [4]. The fact that the sequence of amino acids can be mutated into other 
forms during evolutionary processes while the structure generally remains intact is 
evidence of this [5]. In this context [6], it has been shown that replicate proteins can be 
artificially constructed from existing proteins when the two proteins have a similar 
function and structure but a dissimilar sequence of amino acids. That is, the structure of 
functionally related proteins provides additional insight into their functional mechanisms 
and this knowledge has been successfully applied to the functional annotation of proteins 
whose structure has been previously identified [7,8] 

  The Structure Alignment Problem (SAP) is the term applied to the need to find the 
superposition and the transformation that will allow the backbones of two proteins to be 
aligned resulting in the highest similarity score. The superposition is a mapping that is 
completed between the residues of two proteins, and the transformation is the 
combination of the rotation and translation of the proteins. The SAP is a non-
deterministic polynomial-time hard (NP-hard) problem [9], and thus, most methods used 
to address this problem employ a heuristic approach [10,11]. 

  A general framework for the development of an algorithm for the SAP consists of the 
following four steps [12]: 1) represent the structure of the two proteins to be aligned in 
spatial coordinates; 2) align the two protein structures; 3) optimize the alignment; and 4) 
evaluate the statistical significance of the alignment using Z-scores or other methods.  

  The quality of the algorithm depends on a quality of the similarity measure that is used. 
This is because the similarity measure is an objective function used to determine the best 
alignment of the two proteins [13]. Most SAP algorithms employ the cRMSD 
(coordinated Root Mean Square Deviation)-based similarity measure. When using the 
cRMSD as similarity measure solely, it is difficult to intuitively judge the level of 
similarity of the two protein structures [14]. Better alignment is expected when the 
alignment length is long and the cRMSD is small. However, the alignment length and the 
cRMSD are positively correlated, such that when the alignment length became longer, the 
cRMSD gets larger. As such, many studies on SAP attempt to balance the two parameters 
through the use of heuristics or statistical methods. Although several usable SAP 
algorithms have been developed, none have resulted in a golden or optimal rate. In 
particular, it is difficult to determine which would be the more accurate alignment in the 
following example: (85, 2.8Å) or (102, 3.2Å), where (alignment length, cRMSD). 

  In this paper, a new strategy is employed that finds not a single solution, but multiple 
solutions with different lengths. This method has obvious benefits in that it does not 
require that the two parameters be balanced. However, this novel method leads to a new 
problem. Specifically, the running time for this method is considerably longer than that 
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for methods that find only a single solution. To address this problem, we propose 
algorithms that can locate a common region of multiple solutions. 

2. RELATED WORKS 

Protein alignment algorithms can be classified into three categories according to the type 
of data that is used in the algorithms [15]. Specifically, the algorithms in the first, second 
and third categories use the C� atom, Secondary Structure Element (SSE), and geometric 
hashing, respectively. 

  For protein alignment algorithms in the first category, the simplest method involves 
using the C� atom in dynamic programming. The best-known of these methods are DALI 
[5] and CE [16]. Double Dynamic Programming [17], Iterative Dynamic Programming 
[18] and MINRMS [19] are based on multiple forms of dynamic programming. 

  The DALI aligns protein structures through the use of distance matrices. A distance 
matrix is an n*n matrix, representing the distance between each pair of residues of the 
underlying protein structure. Specifically, the cell at the i-th row and the j-th column of 
the distance matrix denotes the distance between the i-th residue and the j-th residue in 
the protein structure. Proteins with similar structures produce similar distance matrices. 
To align the structures of two proteins, DALI compares their distance matrices. To reduce 
the processing time for this type of alignment, DALI divides the distance matrix of each 
protein structure into segments and identifies segment pairs with similar distance patterns. 
Then, the overlapping segment pairs identified in the previous step are combined into 
larger segment pairs to maximize the similarity score. 

  Rather than using distance matrices, the CE approach divides protein structures into 
fragments and finds pairs of these fragments, called an Aligned Fragment Pair (AFP), 
which display high levels of similarity. Next, similar to the segment pairs found using the 
DALI, the AFPs are extended into a final alignment. 

  The computational cost of methods that are based on dynamic programming, such as 
DALI and CE, depends upon the length of the protein structures to be aligned. Both 
DALI and CE have adopted a heuristic approach to reduce computational cost by treating 
a certain number of C� atoms as a single processing unit. However, these methods do so 
without considering the similarity of the protein structures to be aligned. Therefore, even 
if the two protein structures being aligned have a high level of similarity, each protein 
structure has to be broken into multiple fragments that are subsequently compared with 
the fragments of the other protein. One limitation of these methods is that they require a 
significant amount of time even when the protein structures are analogous. 

  Lotan and Schwarzer proposed an algorithm [20] to minimize the alignment time by 
reducing the number of C� atoms prior to the alignment process. This algorithm uses a 



 

Proceedings of the Fourth International Conference on Emerging Databases(EDB 2012) 

small number of C� atoms during the alignment process, and thus, reduces the alignment 
time. This method can determine the similarity of aligned protein structures. However, 
this method is unable to determine which of the residues are responsible for the alignment. 

  One method that is representative of the second category of protein alignment 
algorithms, called VAST, uses SSE [21]. VAST is a hierarchical alignment algorithm. 
The algorithm initially aligns the two proteins using only their SSE, which is the higher 
structure data than the C� atoms. Next, the aligned result is used as a superposition that is 
extended into the C� atom level. One of the relative strengths of these algorithms is that it 
allows for the superposition to be more quickly identified through the use of SSEs rather 
than C� atoms, thus reducing the total alignment time. However, in this process, there are 
still proteins whose C� atoms are identified although the SSEs are not, and this limits the 
usage of this algorithm. Information about the C� atoms can be obtained through Nuclear 
Magnetic Resonance (NMR) spectroscopy and/or X-ray crystallography. Typical 
programs used to locate SSEs include DSSP [22] and STRIDE [23]. 

  The third category of algorithms uses geometric hashing, which converts reference 
frames into hash values and stores them as a hash table. Protein structures are then 
aligned using these hash values as frames of reference. 3-D lookup [24] is another 
representative algorithm used in the alignment of protein structures, and this method 
employs the SSE as a reference frame. Additionally, Nussinov and Wolfson [25] have 
proposed a protein structure alignment algorithm that employs the C� atom as a reference 
frame [26]. However, the accuracy of these methods is low as only the predefined 
reference frames are used during the alignment process. 

  Recently, Erdmann [27] proposed a protein structure alignment algorithm. To align the 
protein structure, this algorithm finds the helix and intersections of each protein structure 
by employing knot theory and geometric convolution. Although two protein structures 
may not be similar as a whole, this algorithm determines that they are analogous if the 
proteins have a similar helix or intersection. 

3. PROBLEM DEFINITION 

In this section, the SAP is defined as a numerical formula. The protein structure, S, is 
given with the complete set of x, y, z coordinates for all atoms. This representation can be 
further reduced to the �-carbon backbone atoms, 

1

n
i i

S r
�

� , where n is the number of 

amino acids. The amino acids are ordered according to the preexisting order on the 
protein chain. The substructure of protein,

1
,k

i i
u q u S

�
� � , is the structure that is a subset 

of atoms in S. uk and Pk denote the substructure and the set of substructures with the same 
length, where k is the length of the substructure. 
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Figure 1. Protein structure, S, sub-structure, u, and transformation, T. 

  In this paper, structure alignment refers not to the global alignment but to the local 
alignment. Therefore, a similarity measure for substructures is needed. It is denoted 
by � �,  a bM u u F , where F is a similarity function that expresses the similarity between ua 

and ub. Here a larger F implies that the pair is more similar. Although the cRMSD and 
dRMSD (distance Root Mean Square Deviation) are distance functions, they are adequate 
representations of F because they have been converted to a similarity function through a 
conversion formula, � �sim 1/ 1 dist� � . Specifically, our proposed method uses cRMSD as 

the F, and M is represented as follows: 

� � � �� � 1M 1/ 1 cRMSD , 1/ 1 , ,,
k

ia b a b a b a bi
i i i

d
u u u u k u u d q qF

k
�

� �
	 
� � � � � � � �	 
	 

� 

�  

Based on this definition, the SAP is defined as follows: 

� � � � � �* *

,
SAP argmax M | ,, , , , , 

a b

a b a b a b a a b b a b

u u
S S u u u u F u S u S u u� � � � �  

The formulas outlined above are explained through the following steps. First, all 
substructure pairs (ua, ub) on Sa and Sb are populated. Second, M for every pair is 
computed, and the pair * *,( )a bu u  for which M is the highest is chosen as the final result. 

  However, this formula needs to be modified since it is possible for S to be rotated 
(rotation) or translated (translation) in 3-dimensional space, and these actions are called 
transformation. Therefore, even when the same pair is aligned, its M may have a very 
different value as a result of transformation. For this reason, the SAP is redefined with the 
following formula including transformation, T.  

� � � � � �� �* *

,

*

,
, ,SAP , arg max , | ,M , ,

a b

a b a b a b a a b b a b

u u T
S S u u T T u u F u S u S u u� � � � �  

, where * *,( )a bu u  and *T  indicate a superposition and a transformation, respectively.  
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4. SIMILARITY MEASURE  

The cRMSD has a critical weakness as a similarity function as it does not reflect the 
alignment length. For example, when there are two alignments, ' '| | | | 21a bu u� �  with 

cRMSD = 0.2Å and '' '' 48a bu u� �  with cRMSD = 0.3Å, the former is the better alignment 

according to the cRMSD. However, in this example, the latter is clearly the better 
alignment if the alignment length is considered in addition to the cRMSD.  

  Due to this problem, the SAP algorithms using cRMSD have proposed similarity 
measures that combine cRMSD and alignment length. To find an optimum or golden rule 
for the combination of cRMSD and alignment length, many researchers have applied 
heuristics that have been identified based on the experience of these researchers and 
therefore reflect the subjective views of the particular researcher. Thus, a particular user 
is unlikely to identify the best alignment by using another researcher’s algorithm if their 
perspectives differ.  
(a) 

P3
a P3

b|u|=3 

ua ub 
Sa

Sb

P4
a P4

b|u|=4 

P20
a P20

b|u|=20 

P21
a P21

b|u|=21 

P5
a P5

b|u|=5 

P19
a P19

b|u|=19 

ua*, ub*, T*

|Sa|=25 

|Sb|=21 

Step 1. populate substructures 

Step 2. align substructures  

Figure 2. Single solution versus multiple solutions with different lengths: A is an example of single solution. B 
is an example of multiple solutions with various lengths 

  In order to address the problem of the cRMSD-based SAP, a straightforward solution is 
proposed that finds not a single solution but multiple solutions, each of which is the best 
alignment for each individual alignment length.  

� � � � � �1
SAP SAP, , , N min ,Na b a b a b

k kk
S S P P S S

�
� ��  

 

  The method for finding multiple solutions is a simple and objective way to address the 
aforementioned problem. However, the amount of time required for this technique will be 
N-times greater than that of the methods that find a single solution if a naïve algorithm is 
used to find the multiple solutions (where N is the number of alignments). Therefore, in 
order to reduce the time-complexity, the CORE-based alignment is introduced in the next 
section. 
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. CORE AND CORE*  

To reduce the processing time required to find multiple solutions, the ideas proposed in 
[28] were utilized. Heuristic-based algorithms typically find a local optimum not a global 
optimum. A common region with long length residues exists between the local optima 
[28]. Thus, if an algorithm is developed to locate this common region, the time-
complexity for finding multiple solutions may be reduced. Therefore, the common region 
is defined as the CORE, and an algorithm to find the CORE and to extend the CORE into 
multiple solutions is proposed herein.  
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3, ra
4, ra

5, ra
6, ra

9 >
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Figure 3. Various local optima produced by various SAP algorithms: Each alignment, A, B, C and D, has 

characteristics that reflect the heuristics used in SAP algorithms. E is the common region of A, B, C and D. 

 
Figure 4. Proposed algorithm. 

  Finding the CORE (step 2 in Figure 4) is the most important step in the proposed 
algorithm. According to the analysis of alignments produced by various SAP algorithms, 
two characteristics of the final alignment were identified. One of these characteristics is 
that the number of fragment-pairs in the alignment is small. The fragment is defined as 
the f that is a substructure and that satisfies the order constraint: qm=ro, qm+1=ro+1, and the 
fragment-pair that is a pair of f. For example, the number of fragment-pairs in the 
alignment for which the length is around 100 is approximately 12. 

(a) Sa= < r1, r2, r3, r4, r5, r6, r7, r8 > (b) ua= < r2, r3, r4, r7, r8 > (c) ua= < r2, r3, r4, r7, r8> 
 Sb= < r1, r2, r3, r4, r5, r6, r7>  ub= < r1, r2, r5, r6, r7 >  ub= < r1, r2, r5, r6, r7> 

Figure 5. An example of the fragmentation of a final alignment: A. Protein structures, Sa and Sb, consist of 8 and 
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7 amino acids (or residues), respectively. B is a structure alignment for Sa and Sb. In B, although both ua and ub 
have two fragments, the fragmented position is not the same. As a result, the number of fragment-pairs in the 

alignment is 3. 
  The other characteristic is that the lengths of the fragment-pairs in the alignment do not 
follow a normal distribution. The lengths of most fragment-pairs are much smaller than 
the average length of the fragment-pairs, and the longest fragment-pair forms a large 
portion of the alignment. For example, when the average fragment-pair length is 8, it is 
common that the fragment-pair length pattern in the final alignment is 14-26-2-2-6 rather 
than 10-8-6-7-9. When comparing the alignments of highly homologous proteins (e.g., 
the family level of the hierarchical SCOP structural classification database [29]) the 
average length of an alignment and the average lengths of the longest fragment-pair were 
127 and 47, respectively. 

 
Figure 6. A graph showing the distribution of the fragment-pair lengths: The length of most fragment-pairs is 

smaller than the average (=8). 

Definition 1. CORE 

Given an alignment � �* *,a bu u   for two protein structures, Sa and Sb, let � �' * ' *,a bu u  be the 

aligned fragment-pair that is satisfied � �' * ' *,a bu u , ' * *a au u� and ' * *b bu u� and ' *au and ' *bu are

fragments. CORE denotes the longest aligned fragment-pair. 

According to Definition 1, the CORE can be found only from a final alignment. However, 
the CORE must be used as seed to find an alignment. As a solution to this problem, we 
introduce CORE* that is similar to CORE and propose an algorithm to identify the 
CORE*. 

Definition 2. CORE*  

Given two fragments, fa and fb, from structures Sa and Sb, respectively, let fa and fb be the 
aligned fragment-pair candidates that satisfy the condition that the similarity score of 
their alignment is larger than the user-defined threshold, T. CORE* denotes the longest 
aligned fragment-pair candidate. 

  As discussed above, the most significant characteristic of CORE is that its length is 
significantly longer than the average length of the fragment-pairs. That is, if the longest 
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fragment-pair is identified from those with a similarity level greater than that of the 
average pair, it is probably the same as that of CORE. This observation is more accurate 
when the length of the CORE is longer. In preliminary experiment with a real dataset, 
97% of CORE*s of which length is over 32 were identical to those identified with CORE. 
The remaining 3% of the CORE* findings only have 2 mismatches. 

  A naïve procedure to find CORE* is composed of the following 4 steps: 1) generate all 
fragment-pairs from Sa and Sb; 2) compute M for all fragment-pairs; 3) remove fragment-
pairs for which the M is smaller than the user threshold; and 4) choose the longest 
fragment-pair among the survivors of the previous steps as the CORE*. However, this 
procedure is time-consuming as the number of generated fragment-pairs is quite large. 
For example, the number of fragment-pairs from Sa(|Sa|=120) and Sb(|Sb|=100) is 439,350. 
Therefore, the following two major heuristics are adopted to increase the speed of the 
verification process for the fragment-pairs. 

  One heuristic is that the verification process proceeds from the longer fragment-pair to 
the shorter fragment-pair as it is desirable to identify the longest survivor. In particular, 
the practical maximum length of CORE*, not the theoretical maximum length; the 
smaller length of Sa and Sb, is used as the beginning length for this process. As an 
example, when aligning two structures, Sa and Sb, the lengths of which are 120 and 100, 
respectively, the practical maximum length of CORE is no longer than 43. Nonetheless, 
the theoretical maximum length of CORE* is 100. This implies that it is needless to 
compute the M of fragment pairs over a length of 43. 

  The other heuristic involves changing the similarity function from cRMSD to dRMSD 
and L�, in order to increase the speed of the computation of M. CORE* is found not by 
the exact value of M, but by knowing whether the value of M is larger than the user-
defined threshold. According to the analysis, it was determined that there was a high 
positive correlation between cRMSD, dRMSD, and L� when the length of CORE* is long 
enough. The computation time for cRMSD is considerably longer than that for dRMSD 
and L� because cRMSD requires transformation. This appears to be true when L� is used 
as F, and it is faster to check whether L� of fragment-pair is greater than the user-defined 
threshold.  

dRMSD ua ,ub� � � i�1

|A|

� j�1

|A|

� dij
a � dij

b� �2

A
,dij � ri � rj

       

� �
1

, ,  ,max
k

a b a b a b
i i i i

d i

L u u d k u u d q q�
�

� � � � ��  

The above-obtained CORE* is a seed for the final alignment. However, the CORE* is too 
short when compared to the final alignment. Our analysis determined that its coverage is 
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not higher than 40% of the final alignment. The DP is known to have the advantage of 
accuracy but the disadvantage of time-complexity. We applied the DP to get longer 
CORE*. 

. EXPERIMENTS  

Experiments were conducted using a variety of protein structure data in Protein Data 
Bank(PDB) [30] to demonstrate the superiority of the proposed algorithm. First, the way 
that the number of CORE*s affects performance was examined by comparing the 
alignments according to the number of CORE*s. Second, performance when the 
refinement process was conducted compared to when it was not was examined to verify 
the necessity of the refinement process. 

  Two parameters were used in the experiments. The first was that the length of the 
fragment pair was used as the start length of verification progress when finding CORE*. 
It was revealed that more than 99% of the alignments had COREs with a length of less 
than 38. Therefore, the alignment was conducted on the fragment pairs that had a length 
of 38. The second parameter used was the similarity score. The thresholds for dRMSD 
and L� were used to decide whether or not the fragment-pairs could be the CORE*. After 
analysing the CORE of alignments, the thresholds were decided to 9.41Å and 4.05Å, 
respectively. 

.1 The processing time and accuracy according to the number of the appended COREs*  

 
Figure 7. The processing time and accuracy according to the number of appended CORE*s used for seeds. 

In the process of finding seeds, the more CORE*s that were used, the longer the average 
length of the seeds was. Consequently, this affected the accuracy of the alignment and 
processing time. As the accuracy decreased, the processing time was reduced according to 
the increase in the number of COREs used, as depicted in Figure 7. 

.2 The accuracy after refining the COREs. 
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Figure 8. The accuracy according to the refinement process of the family and super-family. 

After locating seeds, the refinement process was executed. This eliminated the 
unnecessary mismatches of the seeds. This was particularly true as shown in the example 
in Figure 8. 

8. CONCLUSION 

The most important aspect of designing algorithms for the protein structures alignment is 
the balancing of the two parameters, the alignment length and the similarity score (i.e., 
the cRMSD). In this case, a better result is expected, when the alignment length is long 
and cRMSD is small. However, research has shown a positive correlation between the 
alignment length and the cRMSD such that increasing the alignment length is associated 
with an increase in the cRMSD. Therefore, the algorithm must incorporate the proper 
alignments that best balance the two parameters. However, this choice depends on what 
alignments are identified in each case.  

  The contributions of this paper are summarized as follows: 1) we proposed a method to 
produce multiple solutions of protein structures of different lengths and reduce the 
processing time by adopting CORE*. 2) Our algorithm makes it possible for users to 
visually choose the alignment they want from multiple solutions using a graph-based 
representation. 
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