PRMS: SSDsOllA{S] Page THHHA| 24

395

DOI: 10.3745/KIPSTD.2010.17D.6.395

PRMS: SSDsell 49| Page =iz #+

of & 8'- = & &" . A "
2 %

Solid-State Disks (SSDs)= whe H AIZL A& d 4R d7] 0] WAt 2& Fydez e sh= d2af bl & ez 7
s gleh ey SSDsi= o] 27](random write)2 Q& 9 @Eol@ dio] flen ol SSDs HEFH Y TaeE Wi et
k. SSDsst #AF 71 AE AEEY o U oAl 27] die] gae] FAsAh £ AFE FAd 2elxs o] At o
2] dlolg] o2& A%HQl 5ol whAshe WS AN o WAL 4 54 Vg A 27 Aol gF FuE FUP F 4] 2
7] ol digh JRE EWA A3} o] frequent itemsetd FE3HAL ol & A&HQ LEo| Aujash: sHoR ofFojuc) wE B A
frequent itemset?] pageS AT F 9l dnAFE AfEch TPC-C 71w A¥d slo] £ A7) Alokg Quix S F8% A 4% 7
7] H 58 84 6% B F U

F|ME : SSDs, E2Al HZ2|, Frequent Itemset Mining

PRMS: Page Reallocation Method for SSDs
DongHyun Lee" - Hongchan Roh™ - SangHyun Park™

ABSTRACT

Solid-State Disks (55Ds) have been currently considered as a promising candidate to replace hard disks, due to their significantly short
access time, low power consumption, and shock resistance. SSDs, however, have drawbacks such that their write throughput and life span
are decreased by random-writes, nearly regardless of SSDs controller designs. Previous studies have mostly focused on better designs of
SSDs controller and reducing the number of write operations to SSDs. We suggest another method that reallocates data pages that tend to
be simultaneously written to contiguous blocks, Our method gathers write operations during a period of time and generates write traces.
After transforming each trace to a set of transactions, our method mines frequent itemsets from the transactions and reallocates the pages
of the frequent itemsets. In addition, we introduce an algorithm that reallocates the pages of the frequent itemsets with moderate time

complexity. Experiments using TPC-C workload demonstrated that our method successfully reduce 6% of total logical block access.

Keywords : SSDs, Flash Memory, Frequent Itemset Mining

1. Introduction

Solid state disk is now expected to play a key role in
storage device system. Due to fast access time of NAND

This work was supported by National Research Foundation of Korea
Grant funded by the Korean Goverment(KRF-2008-313-D00R49),

This research was also supported by Basic Science Research Program
through the National Research Foundation of Korea(NRF) funded by the
Ministry of Education, Science and Technology(2010-0010689)

= 8 9 AdEe FHFE st FEa A

s MdEhe e et Wbty

R L s R S T B e Bl

-1 2010 44 209

1112k 20104 69 391, 23} 20100 74 199

120104 79 289

+
+
"t

ok o AN A
e

flash memory and SSD's own internal mechanism, the
throughput of SSDs is superior to that of hard disks
[1-4]. Hence, low power consumption and outstanding
physical durability of SSDs accelerate the spread of
SSDs for various areas to adopt them as major storage
device. Despite of such merits, several drawbacks of
SSDs exist since SSDs inherit shortcomings of NAND
flash memory. Unlike hard disks, NAND flash memory is
unable to overwrite a page, whereas writing an empty
page is available. NAND flash memory must erase a
block, a set of contiguous pages, before updating specific
data located in a page. Such an inefficiency of NAND

396 HE=EX2ISE=EX D M17-DE M6=(2010.12)

flash memory has been issued early and many studies
have focused on improvement of update mechanism [5, 6]
or design of SSDs-specialized data structures [7, 8]. The
life span of NAND flash memory is another drawback. A
block becomes unusable after the number of erase
operation on the block exceeds a certain number. Several
wear-leveling algorithms were proposed to even erase
counts of NAND flash memory block [9, 10]. Infeasibility
of inplace-update and limited life span imply that random
write is a major factor of performance degradation of
SSDs. Random writes cause more erase operation on
blocks and shorten the life span of NAND flash memory.
Moreover, frequent random writes bring the internal
fragmentation, decentralization of logically related data,
which worsens the throughput of SSDs [11].

In this paper, we suggest a method called PRMS
(Page Reallocation Method for SSDs) to reduce random
writes without any modification of internal structure of
SSDs. Since the internal structure of SSDs has substantial
influence on the performance of SSDs, many SSDs
manufacturers conceal their internal structure of SSDs.
Our method is based on two assumptions. First, most
workloads have I/O patterns, the non-uniform distribution
of stored data. Second, many systems such as OS and
DBMS mostly request a set of write operations rather
than a single write operation in order to avoid I/O
bottlenecks. If we can find write operations that are both
simultaneously and frequently requested, pages of SSDs
modified by those write operations can be reallocated in
logically contiguous regions (ie. contiguous logical blocks
of SSD). We define the pages modified by write
operations that are both simultaneously and frequently
requested as the frequent page set. Reallocating the
frequent page sets to continuous logical blocks enhance
the performance of SSDs. In more detail, incoming writes
to the frequent page set can be efficiently processed.
After the reallocation, write operations which write the
frequent page set can be processed as if those were
sequential writes other than random writes. Write
operations to contiguous logical blocks are probably faster
than write operations to several random logical blocks.

The remainder of this paper is organized as follows.
In the next section, we introduce the background of this
paper. Section 3 introduces the overview of our method.
The details of our method are described in sub-section
3.1, 32, and 3.3. Section 4 presents experimental results.
Section 5 concludes the paper.

2. Background

2.1 Frequent Itemset Mining

Let I = {il, i2-in} be a set of items. Let D = {tI, 2,
t3-tm} is transaction-based database and each
transaction is denoted as ti. Every transaction of D is a
subset of I. Set S is called itemset if S is a subset of [
and is called k-itemset if the number of elements of S is
equal to k. The support of set S is the number of
transactions including S as a subset. If the support of S
is greater than a given threshold (ie. minimum support
count threshold) then the itemset is a frequent itemset.
An itemset S is called maximal frequent itemset if no
superset of S is a frequent itemset.

2.2 Related Works

The concept of association rule, which includes the
concepts of the frequent itemset, was first introduced in
[12]. A classic algorithm for mining frequent itemset is
Apriori algorithm [13]. After the Apriori algorithm has
been proposed, many related algorithms have been
suggested [14-16]. Specifically, FP-growth is known as
one of the fastest algorithm for mining frequent itemset.
After the appearance of SSDs, some researchers are
interested in the internal structure of SSDs [1, 11]. [1]
has surveyed the known internal structures of SSDs and
suggested basic policies to enhance the performance of
SSDs. Other study suspected the internal structure of
SSDs by analyzing the result of benchmark executed on
SSDs [11]. This study also discussed the factors that
degrade the performance of SSDs. Tracing kernel
operation has been used by several studies. [17] designed
the kernel level tracing tools for analyzing kernel
activity. [18] implemented the system call monitoring
tools for detecting write operations.

The fields of applying data mining in system are
various. The well-known studies are [19, 20], adopting
data mining to detecting abnormal behavior on networks.
Several studies have been focused on applying data
mining to storage device fields. [21] suggested a concept
called pre-fetching. Pre-fetching reduces the latency of
storage device and predicates the incoming read request
and reads the data before the actual demands. Recently,
[22] proposed the more sophisticated pre-fetching method.
The pre-fetching, however, only enhance the read
performance of the storage device.

3. The Overall Process of PRMS

The overall process of PRMS is twofold. The first
process is finding the frequent page sets. PRMS
generates write traces, the set of write operations, while
the workloads are executed. After the generation of write
traces, PRMS finds frequent page sets from write traces
by applying frequent itemset mining. Like other frequent
itemset issues, PRMS examines itemsets and transactions
from input data and find frequent page sets. Different
from other frequent itemset issues, PRMS handles the
overlapping of certain items over several frequent page
sets. The second process is the reallocation of frequent
page sets. In this paper, PRMS reallocates frequent page
set by using Parallel ATA (PATA) commands, the
standard interface for the connection of storage. As
PATA commands directly handle the logical sector of
storage devices, PRMS can reallocate the pages
corresponding to the logical sector. Reallocating algorithm
of PRMS considers the size of logical block in SSDs and
the 1/O efficiency.

3.1 Generation of Write Traces

PRMS maintains information of requested write
operations on main memory and periodically flushes the
information to storage devices. <Table 1> shows an
example of write traces. There are two ways to tracing
write operations. One is recognizing the write operation
immediately when the workloads deploy it. The system
called Amino implemented this method by utilizing a
monitoring process in Linux systems [18]. When a
system call is invoked, Amino catches a system call and
check out this system call incurring write operations.
This method can directly fetch the write operations. The
other method is recognizing write operations when data
are written to storage devices (i.e. when the disk cache
is flushed into storage devices). Since generated write
traces from the second method are strongly related to
real write patterns, we adopted the second method in
catching write operations.

Tracing write operations can be additional overhead to
upper layers of SSDs. Main memory space has to be
spared for maintaining information of requested I/O
operations. Flushing the write traces to storage devices
causes another write cost. From the results of our
observation, the memory space and additional write cost
revealed to be manageable. For 20,000 write operations

PRMS: SSDsOIAM S| Page THUHAl 24 397

(Table 1> An example of write traces

Time point Sector offset | # of sectors to write

PM 8:49:13.921 100 8
PM 8:49:13.921 56 1
PM 8:49:13.921 110 16
PM 8:49:13.921 35

PM 8:49:14.687 100 8
PM 8:49:14.687 3 8
PM 8:49:14.734 104 16
PM 8:49:14.797 56 4
PM 8:49:14.797 110 16

which are generated from TPC-C benchmarks, the size
of the write traces is approximately 8 MB. Writing 8MB
data to SSDs used in our experiments took 0.015
seconds. This additional write cost is relatively small,
compared to 635 seconds, which was taken for 20,000
write operations to be processed on SSDs. Therefore, the
cost of generating write traces will be tolerable if the
upper layers of SSDs save the main memory space for
maintaining write traces and flush the memory space to
SSDs.

3.2 Extraction of Frequent Page Sets from Write Traces

Finding frequent page sets is identical to frequent
itemset mining. Each write operation of write traces can
be treated as an item. The information such as sector
offset and number of sectors to be written distinguishes
each write operation from one another. We define the
range deduced from sector offset and number of sectors
to be written as write range. <Table 2> shows
extracted items from write traces of <Table 1>.

Unlike frequent itemset mining issues, finding frequent
page sets has the overlapping problem. Specifically, write
operations have different write ranges, due to different
offset and different amount of data to write. Each write
range can overlaps one another. In <Table 2>, write
range of item II is sector 100~107 and write range of
item 5 is sector 104~119. Thus, two write ranges
overlaps within sector 104~107. In frequent itemset
mining issue, each item does not overlap to others.
Therefore, the way to cope with the overlapped write
range problem should be considered. One intuitive
approach is decomposing write operation into items each
of which has only one sector per item. From upper
example, 8 items can be identified from I1. This approach,

398 HEM2/E2=EX D M17-D M6=(2010.12)

(Table 2> Extracted items from write traces shown in

(Table 3) Cumulative percentage of support count of write

Table 1 trace
Time point Sector offset et ;ecntt;rs w Item Id Curnu]pa:]l‘.igzesga;nl ot pefcfnnt':;:v(i o)

PM 849:13.921 100 8 11 Support count = 6 1,054 1.922

PM 8:49:13.921 56 4 12 Support count = 5 2,021 3685

PM 8:49:13.921 110 16 13 Support count = 4 3,593 6.552

PM 8:49:13.921 3 8 I4 Support count = 3 7622 13.899

PM 8:49:14.687 100 8 I Support count = 2 54,838 100

PM 8:49:14.687 3H 8 14 Total 54,838 100

PM 8:49:14.734 104 16 5

PM 8:49:14.797 56 4 12 (Table 4 Identified transactions and maximal frequent itemsets

o BT 10 % B from write traces shown in <Table 1>

Transaction ID Itemset

however, generates a substantial number of items. In this Tl I1,1213,14
paper, we strictly regard each write operation as an item T2 1114
even if other items nearly overlap the item. The policy, T3 5
one item per write operation, alleviates the difficulty of T4 o
mining process. Nevertheless, the overlapping problem
cannot be completely resolved. We address the remaining Frequent itemset Itemset Support count
problem in reallocating phase. By comparing time points Sl {11,14) 2
of write operations with one another, a set of write g2 {12.13) 2

operations can be converted to a transaction. As
mentioned in section 3.1, PRMS
operations when data are written to storage devices. If a

recognizes write

set of write operations has the same time point, these
write operations were written to storage devices at once.
In this paper, we define a set of write operations whose
time points are the same as a transaction.

To define the appropriate minimum Ssupport count,
PRMS observes the cumulative percentage of support
count of certain write trace. In detail, PRMS groups the
page sets by its support counts. PRMS considers the
lowest support count of groups within top n % page sets
(decreasing order by its support count) as the minimum
support count. For example, if we choose the parameter
n to 10 %, the minimum support count in <Table 3>
will be 4. If the parameter n is 15 %, then the minimum
support count in <Table 3> will be 3 and so on.

The other concepts applied to PRMS are follows.
PRMS finds the maximal frequent itemsets. If a frequent
page set denoted as SI is a subset of other frequent
page set denoted as SZ2, there is no need to reallocate
both SI and S2. The frequent page set SI can be
eliminated from the mining result. For its popularity and
efficiency, we adopt FP-growth to our frequent itemset
mining process [14].

<Table 4> shows the identified transaction and
maximal frequent itemsets where .the minimum support
count is 2.

3.3 Reallocation of Frequent Page Sets to Logical Blocks

3.3.1 Expansion Process

Reallocation without considering overlapped write
range causes additional write operations. An update
operation depends on data to be written. Therefore,
reallocation of data changes the write ranges of the
related update operations. Assume that a certain part of
write range of an update operation is reallocated. After
the reallocation, the incoming update operations should
update both the reallocated write range and
un-reallocated write range. As two updates cannot be
handled in one write operation, such a case generates
additional write operations. (Fig. 1) is an example of
additional write operations when frequent page set SI is
reallocated to sector 200~215(sector 200~207 for [1 and
sector 208~215 for I4). If the write operation I5 is an
update operation, the incoming write operation [5 should
write data to sector 204~207 and 108~119.

PRMS handles the overlapping problem by expanding

(Fig. 1) Additional write operations by the reallocation.
Sector 100~107 is moved to sector 200~207 and
sector 35~42 is moved to sector 208~215

Write range of [4 Write range of 11
e—— ——
Js [Je] Jwl[. Jw[.Jw].Jw]
— 7

Write range of I3
l Frequent page set $1is reallocated

Write range of [4
|

Write range of 11
1
w [s | [1115 |

|L] HE3 5
e

Jus] . Tus]
;'_J

Write range of I3 Write range of I3

the write ranges of overlapped frequent page sets. In
brief, if PRMS reallocates write range A overlapping
write range B, PRMS expands write range A to the
union of A and B (AUB). (Fig. 2) is an example of

(Fig. 2) The reallocation of expanded frequent page set.
Write range of |1 is expanded to sector 100~119,
For the reallocation, sector 100~119 is moved to
200~219 and sector 35~42 is moved to sector 22
0~217

Write range of 4
———
| :1]; E1IEESE

Write range of 11
|

L =
_] 200 | | :L-:u |] 207 |

Y
Write range of 13

[Algorithm 1] Expansion algorithm

Expansion algorithm

Input : write traces WT, frequent page sets F

QOutput: expanded frequent page sets EF

Expansion algorithm(WT,F)

1: for each frequent page set S of F do

2 for each write range w of S do

3 Set ws < start offset of w

4 Set we < end offset of w

A for each write range t of WT do

6 if ¢ overlaps with w then

T Set ws «— start offset of w U ¢

8 Set we < end offset of w U ¢

9 Set start offset of w <« ws and end offset of w
“— we

10: for each frequent page set S of F do

11: for each write range p of S do

12 for each frequent page set i of F do
13: for each write range g of K do

14: if p overlaps with ¢ then

15: set p < pUg and g < pUg

16: EF <« F and return EF

PRMS: SSDsOlA 2] Page THHHA] &' 399

expansion process. Since [1 and I5 overlaps each other,
PRMS expands write range of I to sector 100~119, the
write range of the union of II and 5. The reallocation
of sector 100~119 prevents the additional write operation
of I5.

If several write ranges RI, RZ2, K3, Jn are
overlapped with a write range R to be reallocated, PRMS
expands the write range R to union of all the overlapped
write ranges and R (RURIURZ2UR3--U Rn). Lines 1 to
9 in algorithm 1 describe the expansion process. For
each write range of all frequent page sets, PRMS locates
overlapped write ranges (line 6) and calculates the write
range of the frequent page set to be expanded (line 7
and 8). After finding all the overlapped write ranges,
PRMS finally set the write range to the calculated write
range (line 9). This scheme is not capable of eliminating
all the expected additional writes. There are overlapped
write operations such that none of them are members of
frequent page sets. To remove all the expected additional
writes, all the write operations of write traces have to be
sorted and the overlapped write ranges have to be
located. This process is not applied to PRMS since high
time complexity is expected. There are still chances of
additional write costs since it is possible for each
expanded frequent page to overlap others. <Table 5>
presents write ranges of expanded frequent page sets
shown in <Table 4>, The expanded write range of II in
S1 overlaps expanded write range of I3 in S2. Therefore,
reallocation of SI causes the fragmentation of S2. To
prevent the additional write operation, PRMS expands the
write range of the frequent page again (line 10-15 in
algorithm 1), Differently from former expansion, PRMS
compares the write range of the frequent set to the write
range of other frequent page set.

The time complexity of expansion algorithm can be
induced as follows. In line 1 to 9, expansion algorithm
scans a write trace for each frequent page set. If we

{Table 5) Write range of each item of expanded frequent page

sets S1 and S2
Frequent Wr’tt? 0:*:‘2'11 (‘)verlappeg F.?(panded
page set [operation — Write operations| write range
y I 100~107 5 100~119
ol 14 3B-42 None 3H~42
o I2 56~39 None 56~59
3 110~125 5 1M~125

400 ZHEMEIEP=2XD H17-DH M6=(2010.12)

denotes the number of write operation of write trace as
M and the average number of write range in a frequent
page set as C and the number of frequent page sets as
N, the time complexity of line 1 to 9 is O(CMN). In line
10 to 15, algorithm 1 scans whole frequent page sets at
each frequent page set. With the same notations, the
time complexity of line 10 to 15 can be described as
O(C'N®). Thus, the whole time complexity of expansion
algorithm is O(CMN + C'N°).

3.3.2 Reallocation Process
The order of frequent page sets
determines the efficiency of reallocation process. To

reallocating

verify the efficiency of each reallocation process, we
compute the total number of logical block accesses before
the reallocation. (Fig. 3) is an example of frequent page
sets. Since each write range is separated to others, the
number of logical block accesses per frequent page set is
the same as the number of write operations in frequent
page set. When each frequent page set has been
requested with the same support count, the total number
of logical block accesses is 90(=6-3+15-3+9-3).

Support count
C
| (1] ‘
b c d
2 0
b d e
F3 (3] [3] [9

(Fig. 3) An example of frequent page sets.

Frequent page set
a b

FI [2] [3

Frequent page set Support count

rooo[2] [3]
b c d
2 0
b d e
B[][10 s
Logical block a b F
Ll 2] 3 |h]]
d e
S T |

(Fig. 4) Intuitive reallocation process of frequent page sets.
The logical block size is 8 sectors

(Fig. 4) is an intuitive reallocation process of frequent
page sets. In (Fig. 4), Fl, F2 and F3 are reallocated
sequentially. The reallocation of FI, FZ2 and F3 is
processed as follows. First, FI1(write range @, b and ¢) is
reallocated to logical block LI. Second, because write
ranges b and ¢ are already reallocated to LI, write range
d of F2 is reallocated. Write range d of FZ is reallocated
to the logical block LZ since there is not enough space
for d in L1. Third, during reallocation of F3, write range
e of F3 is reallocated since write range b and d are
already reallocated in LI and LZ2. There are enough
space for write range e in both LI and L2 We randomly
choose L2 as a logical block in order to reallocate write
range e. After the intuitive reallocation, logical block
accesses of frequent page set are reduced. For example,
we need only one logical block access to handle the
frequent page set FI after the intuitive reallocation. If
each frequent page set has been requested with the same
support counts, the total number of logical block accesses
is 54(=6+15-2+9-2). Compared to 90(i.e. the total number
of logical block accesses before the intuitive reallocation)
intuitive reallocation definitely decreases the number of
logical block accesses. However, this intuitive reallocation
scheme ignores the priority of frequent pages.

PRMS considers the priority of each frequent page set.
PRMS reallocates first frequent page set with higher
support count. In more detail, PRMS sorts the frequent
page sets in decreasing order of support count and
reallocates sorted frequent page set sequentially. The
way of reallocating each frequent page set is identical to

intuitive reallocation. (Fig. 5) is an example of

Frequent page set b 5 d Support count
0
b d e
ro [][]0 o
a b c
oo 2] s] [°
Logical block b & d i
v [N[s]
a
S B |

(Fig. 5) Reallocation process of frequent page sets in
decreasing order of support counts

[Algorithm 2] Reallocation algorithm

PRMS: SSDsOllM Sl Page THHHAI 2 401

Table 6) TPC-C benchmark tests

Reallocation algorithm
Input : Expanded frequent page set EF, logical block
set LBS

Reallocation algorithm(EF,LBS)

1: sort each frequent page set in decreasing order of
support counts

2. for each frequent page set P of EF do

3 for each write range w of P do

4 if w is not reallocated then

o for each logical block LB of LBS do

6. if remained space of LB > data size of w then

7 move data of w to LB and break the

iteration 5~7

reallocating frequent page sets in decreasing order. After
this reallocation, the total number of logical block
accesses is 36(=6:2+ 15 + 9). The reallocation algorithm
is described below.

Similar to expansion algorithm, the time complexity of
reallocation algorithm can be defined as follows. Denoting
the average number of write range in a expanded
frequent page set as C, the number of frequent page sets
as N, the number of logical block as L and the average
time for moving data of a write range to logical block as
T, the time complexity of reallocation algorithm is
O(NUogN + C(L+T))).

4. Experiments

Our experiments were based on common environment,
equipped with 23 GHz CPU and 2GB RAM. As a
storage device, we used a commercial SSDs, MTRON
MSP-SATA7035. The maximal performance of the used
SSDs is 120MB/sec for read and 90MB/sec for write.
Logical block size of SSDs used in our experiment is
IMB. We used 16GB space for the benchmark test. The
operating system was Windows XP and DBMS was
MySql 5.0.

For the benchmark test, we used a specified toolkit
[23]. To reduce the interference, we modified TPC-C
TPC-C defines the behavior of each
emulated users, not the whole group of emulated users

parameters.

[24]. Therefore, not enough quantity of emulated users
may randomize the write patterns. For regulation of the
side effects of several emulated users and the limits of
our experiment environments, we set the number of

TPC-C Executed Logical block Executed
test transaction accesses time(sec)
T1 10,000 37411 2233
T2 10,000 36,824 2,196
T3 20,000 73970 4,631
T4 20,000 74,696 4,272

emulated user to 1. TPC-C parameters such as key time
and think time were set to 5 seconds each. We run
several benchmark tests and choose 4 tests for mining
and reallocating process.

As a preliminary process, PRMS calculated the
appropriate minimum support count. We consider the
support count of top 5 % highly-accessed page sets as
the minimum support count. By observing the cumulative
percentage of support count of certain write trace (i.e.
test T1), we choose 5 as the minimum support count.

Since the real benefit of reallocation is hard to
estimate, we planned a simulation for the estimation. The
related work revealed the performance degradation of
SSDs after the initial data distribution of SSDs is
randomized by random writes [11]. During our
experiments, we observed the performance of write
operation was decreased after the several benchmark
tests were executed. Erasing all blocks of SSDs and
rebuilding the data may recover the write performance of
SSDs, however, such process changes the whole data
distribution of SSDs. From this reason, we did not
actually reallocate frequent page sets to SSDs. We
virtually reallocated frequent page sets to main memory
spaces. We assumed a benchmark test was occurred
after the reallocation and counted the logical block access
of benchmark tests.

<Table 7> shows the measured mining time and
reallocation time of the experiments. <Table 7> also lists
the factors to determine the reallocation time. In our
experiments, the measured reallocation time matches the
time complexity of reallocation process. For example, the
logical block access (denoted as M in section 3.3) and
the total number of write range of frequent page sets
(denoted as M-C in section 3.3) of T3 are twice than
that of TI. According to the time complexity, the
reallocation time of T3 will be four times more than
reallocation time of 7J. Shown in <Table 7>, the
estimated reallocation times matched the assumption. The
main time-consumed task was mining process. The

402 FEX2ER=2X D M17-DR HB6=(2010.12)

(Table 7> The measured mining time and reallocation time

TPC-C | Logical block | Mining Reallocation Total
test accesses time time time
T1 37411 6.687 1.59% 8.282
T2 36,824 7.798 1.377 9.175
T3 73,970 9.556 5993 15549
T4 74,656 10.941 4707 15,648

TPC-C |Logical block| ~ Number of | AYErage number of
test accesses |frequent page sets s i R
frequent page set
T1 37411 49 8.173
T2 36,824 996 7.700
T3 73970 2,989 5.156
T4 74,656 3,042 5003

(Table 8) Simulated result of the reallocation. The reduced
percentage is the ratio of reduced logical block
accesses to the original logical block accesses of
the benchmark

Test for | Test for Logeal Diock | Reciced logical blocks
mining | simulation eopetes ller | paaiage for reallocation
reallocation (%)
Tl T2 34,362 6.69 5
T2 T3 70317 494)
T3 T4 69,501 6.91 15
T4 T1 34972 6.52 15

mining time was approximately proportional to the size
of write traces.

In our experiments, 6.2% of logical block accesses
were reduced after the reallocation of frequent page sets.
The reduced access of logical block means that more
pages can be written in one logical block. Such an effect
saves the time for searching the logical blocks and ease
the update mechanism in block based SSDs.

Though the percentage of reduced logical block
accesses seems small, there are three contributions. First,
PRMS enhanced the write performance without modifying
any internal structure of SSDs. Applying PRMS would
increase the performance of system regardless of any
SSDs. Second, the benefit of reallocation is sustained in
period of time. Each four tests were selected randomly
among several benchmark tests. This selection regulates
the temporal data correlation of each reallocation process.
From this point of view, PRMS can be executed in cycle

and soften the cost of PRMS. Third, PRMS only needs
small number of logical blocks for reallocation. All four
reallocation simulations use S5MB or 15 MB memory
space for the reallocation. The the simulation denoted on
third row, test T3 in <Table 6>, writes approximately
1280MB on SSDs. Since average request data size per
one logical block accesses in our experiments is 16 KB
and reduced percentage is 4.94%, total size of 58MB
write operations were serialized with other write
operations. And such effect was taken by using only
S5MB for reallocation.

5. Conclusions and Future Work

We proposed a novel way of improving the performance
of SSDs. In this paper, we suggested that the migration of
frequent data could reduce the overall performance
degradation of SSDs which is mainly caused by frequent
random writes. Due to the fact that internal structure of
SSDs is completely different from that of hard disks, we
designed a basic algorithm for the reallocation process. Qur
experiment results confirmed that classic frequent mining
algorithm, FP-growth, could be applied to mining frequent
page sets with reasonable time complexity. In simulation
experiment, PRMS reduced the number of logical block
accesses by approximately 6.2%.

Several unsolved problems exist in our research. First,
PRMS was experimented with synthetic benchmarks. We
have plans to apply our method to several real workloads.
In addition, we are eager to analyze the appropriate
execution cycle and performance evaluation of PRMS in
real workloads. Second, we used common monitoring
tools for generating write traces. Implementing PRMS on
open source OS or building own monitoring module is
possible as a direction of our future research. Third, the
mining algorithm is imperfect for mining frequent page
sets due to the overlapping problem. Besides, the recycle
of former frequent page set in next frequent page set
mining was not considered. We are willing to design an
appropriate algorithm for fining frequent page sets in
SSDs. Forth, we are planned to apply PRMS in SSDs
based on the page mapping FTL. As our method
reallocates frequent page set into one logical block, PRMS
does not enhance the write performance of SSDs based
on the page mapping FTL.

References

[1] Nitin Agrawal, et al, “Design tradeoffs for SSDs
performance”, USENIX 2008, p.57-70, 2008,

[2] www.intel.com/design/flash/nand/extreme/index.htm

8] As=, nd4, “apAd) 2E2]#) SSD 7| 3", A EA
A2 59 report, 2008.

(4] 249, “AAd 4382 SSDe F4zt AAbd", SERI
report, pp.1-15, 2008.

[5] S. W. Lee, et al, “A log buffer-based flash translation layer
using fully-associative sector translation”, ACM Transactions
on Embedded Computing Systems (TECS), 6(3), pp. 18-es,
July 2007,

[6] Kim,], Kim, J. M, Noh, S. H,, Min, S. L., and Cho, Y, “A
space-efficient flash translation layer for compact-flash
systems”, IEEE Transactions on Consumer Electronics,
48(2), 2002.

(7] Yz, ol “Z4 vize] 7|yte] B+Egr <ne]Z” g
A YA RS FASEL RS =24, A 79, A 135,
pp.167-172, 2006.

(8] #HAE, 745, o444, “Flash SSD Aol A ¢le~ 7]uk Ao
A", d=AFHETYEEUE =83, A 17, 4 BE, pp.
33-34, 2008.

[91 L. Chang. “On efficient wear leveling for large-scale
flash-memory storage systems”, SAC07, pp.1126-1130,
2007.

[10] K. M. J. Lofgren, R. D. Norman, G B. Thelin, and A. Gupta,
“Wear Leveling Techniques for Flash EEPROM”, In United
States Patent, No 6,850,443, 2005.

[11] Feng Chen, et al., “Understanding Intrinsic Characteristics
and System Implications of Flash Memory based Solid State
Drives”, ACM SIGMETRICS, 2009.

[12] R. Agrawal, T. Imielinski, and A. Swami. “Mining
association rules between sets of items in large databases”,
Proceedings of the ACM SIGMOD Int'l Conferenceon
Management of Data, 1993.

[13] Agrawal R, Srikant R. “Fast Algorithms for Mining
Association Rules”, VLDB, pp.487-99. 1994.

[14] J. Han, H. Pei, and Y. Yin, “Mining Frequent Patterns without
Candidate Generation”, In Proc. Conf. on the Management
of Data (SIGMOD'00, Dallas, TX), ACM Press, New York,
NY, USA 2000.

[15] Pei, J., Han, J., and Mao, R, “CLOSET: An efficient algorithm
for mining frequent closed itemsets”, In Proc.
ACM-SIGMOD Int. Workshop Data Mining and Knowledge
Discovery (DMKD'00), Dallas, TX, pp.11-20, 2000.

[16] D. Burdick, M. Calimlim, and J. Gehrke, “MAFIA: a maximal

PRMS: S5SDsMIM Sl Page RHUHA|l 224 403

frequent itemset algorithm for transactional databases”, In
Intl. Conf. on Data Engineering, April 2001.

[17] C. LaRosa and et al. “Frequent pattern mining for kernel trace
data”, In Proc. of ACM SAC'08, 2008.

[18] Charles Wright, Richard Spillane, Gopalan Sivathanu, and
Erez Zadok, “Amino: Extending ACID Semantics to the File
System.” In FAST '05 Conference on File and Storage
Technologies, December 2005.

[19] Clifton. C, and Gengo. G., “Developing custom intrusion
detection filters using data mining”, In Proceedings of the
2000 Military Communications International Symposium,
2000.

[20] Lane, T. and Brodley, C. E. “Sequence matching and learning
in anomaly detection for computer security”, In AAAI
Workshop: Al approaches to Fraud Detection and Risk
Management, pp.43-49, 1997.

[21] Griffioen, J. and Appleton, R. “Reducing file system latency
using a predictive approach”, In Proceedings of the USENIX
Summer 1994 TechnicFal Conference, pp.197-207, 1994.

[22] Li, Z., Chen, Z., and Zhou, Y. “Mining Block Correlations to
Improve Storage Performance”, ACM Transactions on
Storage 1, 2, pp. 213-245, 2005.

[23] www. hammerora.sourceforge.net/

[24] www.tpe.org/tpee/

o & ©

e-mail : ldh@cs.yonsei.ac.kr

2008 29 AMistn e)
(&84h

20100 29 AAdigtn 7 e 2sta)
(F44h

#A 2ok dolg nlolyd, SSD

=&

e-mail : fallsmal@cs.yonsei.ac.kr

2006\ 29 Axcieta e 2eta
(58

2008'd 29 AM gt 7 Fe 23t
(&34 A

20084 38 ~3 A AMddiga HFe
LRI AEE

] wok: FelsiviRe] A9, SSD, dlolH wolyd

404 HEXEISE=2X D MI7-DR M6=(2010.12)

o & 9

e-mail : sanghyun@cs.yonsei.ac.kr

19894 29 M&digta #FEE 5
(8

19914 29 M-aoistw e e
(84 AD

20013 29 UCLA digha #4tsta
(F8HatAh)

20019 29~2002¢ 6¥ IBM T.] Watson Research Center
Post-Doctoral Fellow.

20029 8¥~2003d 8Y ¥aFyoitw HFE T 2uF

20039 9¥~2006 8¥ dAMdlgn FHFE AE}H zusy

20061 98 ~& A AAdSE FHiFei et} Fus

Al Eok: dlojewlo] & Hel dlolE wio]yd, vlo] @QIEufE 2
XML

