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Abstract. As a total amount of traffic data in networks has been grow-
ing at an alarming rate, many researches to mine traffic data with the
purpose of getting useful information are currently being performed.
However, since network traffic data contain the information about In-
ternet usage patterns of users, network users’ privacy can be compro-
mised during the mining process. In this paper, we propose an efficient
and practical method for privacy preserving sequential pattern mining
on network traffic data. In order to discover frequent sequential pat-
terns without violating privacy, our method uses the N-repository server
model that operates as a single mining server and the retention replace-
ment technique that changes the answer to a query probabilistically. In
addition, our method accelerates the overall mining process by maintain-
ing the meta tables in each site. Extensive experiments with real-world
network traffic data revealed the correctness and the efficiency of the
proposed method.
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1 Introduction

Owing to the rapid advance of network technology, the number of computers con-
nected to the Internet increases dramatically, so does the information delivered
over the vast Internet. Recently, there has appeared a new kind of data mining
researches that extract useful knowledge from network traffic data automatically
gathered by a remote server [9,7,11].

Table 1 shows an example of network traffic data gathered by Ethereal1. The
network traffic data have the following characteristics: First, there exist various
kinds of data since all the computers connected to the Internet can produce
network traffic data potentially. Second, a huge amount of network traffic data
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Table 1. An example of network traffic data gathered by Ethereal

timestamp source address source port destination address destination port
13:37:11.950966 180.1.1.1 36872 amazon.com www
13:37:11.954474 amazon.com www 180.1.1.1 36872
13:37:22.384472 180.1.1.1 36915 192.168.1.3 telnet
13:37:22.385327 192.168.1.3 telnet 180.1.1.1 36915

are accumulated due to frequent actions for data sending/receiving by a lot of
computers. Third, network traffic data are scattered over a large number of sites.

Sequential pattern mining is the most useful for this application since the
order of events has an important meaning in network traffic data [9,7].

Network traffic data contain detailed information of Internet usage for every
user, which informs that a user accesses a site at a time specifically. Herein,
data mining on network traffic data has the problem of compromising privacy
of network users. Therefore, it requires sophisticated techniques for hiding or
reforming users’ private information during a data gathering process. Moreover,
these techniques should not sacrifice the correctness of mining results.

Privacy preserving data mining is a new kind of a research area that aims at
mining data with guaranteeing privacy of individual users [4,13,2,5,8,6,10,12,14].
Recently, there have been many research efforts performed in this area. Most
methods proposed in prior studies, however, manage data in a few sites or deal
with a small number of distinct types of data. Thus, these methods are not
appropriate for mining network traffic data since they suffer from the problems
of incorrectness and low performance.

In this paper, we discuss solutions to the problems that occur in previous
methods. We propose a novel method for sequential pattern mining on network
traffic data. The proposed method preserves privacy of sites and guarantees the
correctness of mining results. The method discovers frequently-occurring network
traffic patterns with hiding site information through two ways: (1) It employs
the N -repository server model that makes multiple servers behave as a single
mining server; (2) It uses the retention replacement technique that changes the
answer by a given probability. Also, the method maintains meta tables in each
site so as to quickly determine whether candidate patterns ever occurred in the
site, thereby making the overall mining process become highly efficient.

2 Related Work

Clifton et al. [4] firstly raised the privacy problem in data mining and motivated
subsequent studies [13,2,5,8,6,10,12,14] that aimed to solve the problem.

In the method proposed in [2], in order to preserve privacy, each site changes
the original numeric value of an individual item before sending the value to the
server by adding an arbitrary value selected from given probability distribution.
The server builds a decision tree by reconstructing actual value distribution.
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Other method called the retention replacement [13,3] perturbs and recon-
structs data in gathering and mining, respectively, for privacy preservation. For
every data whose element represents 0 or 1, each site sends the original value
with probability p and the perturbed one with probability (1 − p). For gathered
data, the server counts the total numbers of 1’s and 0’s, and then estimates the
original numbers of 1’s and 0’s. This method is applicable only to boolean data.

Some later studies [5,3] tried to apply those two methods to various data
types, however, showed lower accuracy as the number of data types increases.

The method proposed by Rizvi et al. [13] uses the retention replacement for
finding frequent itemsets. This can be applied to the case where item types to
occur are pre-determined. Considering network traffic data where a large number
of item types occur, we can hardly determine all the item types in advance. Also,
this method finds frequent patterns via a whole database scan and thus is very
inefficient since network traffic data are very huge.

The method proposed in [8] collects local frequent itemsets from sites by
employing a commutative encryption and obtains global frequencies of itemsets
by employing a secure sum which uses a random number. For performing a
commutative encryption and a secure sum, this method has to serially send data
in the cycle of sites. This requires a lot of time in case of a large number of sites.
Fukasawa et al. [6] improved the efficiency and security of this method. However
the improved one still has cycling communications.

Zhan et al. proposed a method for sequential pattern mining with privacy
preservation [14]. This method mainly targets a distributed environment where
vertical partitioning without duplication is employed. In our situation, dupli-
cated data could occur in more than one site since multiple PCs can access the
same Internet site. Therefore, this method is inapplicable to network traffic data.

In the method proposed in [10], a secure protocol is used for mining a decision
tree classifier from distributed sites. Pinkas [12] showed how protocols for secure
distributed computation can be employed for privacy preservation, however he
also pointed out that the performance of protocols should be improved.

In summary, prior studies have the problems applying to a large amount of
network traffic data. First, due to a variety of data types, previous methods are
not directly applicable and cannot obtain accurate mining results. Second, since
there exist a large number of sites and data can be duplicated, previous methods
targeted for a distributed database environment have limitations on practicality.

3 Problem Definition

Network traffic data are normally gathered by a tcp/ip data capture program
such as Ethereal. In this paper, we aim at finding sequential patterns from net-
work traffic data without disclosing data in each site. First, we simplify the
network traffic data in the form of Table 1 as those in the form of Table 2. In
Table 2, “out” denotes sending and “in” does receiving.

In order to find temporal relationship among events in network traffic data, we
can apply sequential pattern mining methods [9,7]. We impose a restriction that
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Table 2. An example of network traffic data reconstructed

timestamp in/out address timestamp in/out address
13:37:11.950966 out amazon.com 13:37:22.384472 out 192.168.1.3
13:37:11.954474 in amazon.com 13:37:22.385327 in 192.168.1.3

two adjacent items in network traffic data should have a time interval smaller
than or equal to a predefined MaxGap value to be regarded as related.

We formulate the problem we are going to solve as follows: Given t sites T1,
T2, ... , Tt, the maximum time interval MaxGap, and the minimum support
MinSup, we discover all the sequential patterns, which have a support larger
than MinSup and a time interval between any pair of adjacent items equal to
or smaller than MaxGap. We assume that a site stores network traffic data as
in the form of Table 2.

A mining process should also satisfy the condition for preserving privacy in
every site. Let us denote a set of sites, where network traffic has occurred, as E
and a set of network traffic data as I. In a mining process, an element ej in E
is opened since it participates in the mining process; Also, an element ik in I is
also opened since it should be contained in a result of mining. However, a pair of
(ej , ik), which says a site ej has been connected to an IP address ik, should not
be opened in a mining process. We define this condition for preserving privacy.

4 Proposed Method

4.1 Overall Mining Process

The proposed mining process consists of four phases. Table 3 shows the definition
of symbols which are used to explain the mining process. The first phase utilizes
the N -repository server model to safely discover F1. The second phase generates
Ck+1 by self-joining Fk. k is initialized to 1 when the second phase is executed
for the first time. If Ck+1 is empty, we enter into the final phase. Otherwise, we
enter into the third phase. For each candidate in Ck+1, the third phase sends
every site the query asking whether the candidate has ever occurred in the site.
After receiving the answers from all sites, the third phase judges whether each
candidate is frequent or not, and then constructs Fk+1, with the candidates

Table 3. Definition of symbols

F1 A set of all frequent sequential patterns of length 1
(or large 1-sequences, frequent items)

Fk A set of all frequent sequential patterns of length k
(or large k-sequences)

Ck A set of all candidate patterns of length k
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judged as frequent. The third phase then increases k by 1 and calls the second
phase. The final phase prints all frequent patterns in F1, F2, ... , and Fk, and
stops the mining process.

4.2 Finding Frequent Items Using N-Repository Server Model

The proposed N -repository server model finds F1, without compromising the
condition for preserving privacy by concealing the linkage between the site iden-
tifier and the traffic data, (ej , ik). More specifically, it obscures their linkage
by encrypting the traffic data, ik, at the first step and by aggregating the site
identifiers, ej , at the second step.

The proposed N -repository server model consists of N servers, {S1, S2, ... ,
SN}, and N pairs of encryption keys and decryption keys, {(EK1, DK1), (EK2,
DK2), ... , (EKN , DKN )}. Each site has all encryption keys but server Si has
only a decryption key DKi (1 ≤ i ≤ N). To find frequent items safely, the
N -repository server model operates as follows:

1. Each site classifies the items (i.e., the traffic data) into N groups, {G1, G2,
... , GN}, using a hash function.

2. Each site encrypts the items in Gi with encryption key EKi (1 ≤ i ≤ N).
3. Each site sends the encrypted items in Gi to server Si+1 (1 ≤ i ≤ N − 1)

and the encrypted items in GN to server S1.
4. Each server performs the aggregation on the encrypted items to obtain the

number of occurrences of each encrypted item and then picks up the en-
crypted frequent items.

5. Each server Si sends encrypted frequent items to server Si−1 (2 ≤ i ≤ N)
and server S1 does to server SN .

6. Each server Si decrypts the received items with its decryption key DKi and
then reports the frequent items to public.

We assume that the servers in our model operate in a semi-trusted operation
model. In the semi-trusted operation model, servers may try to acquire private
data but do not cooperate with other servers to do that. This semi-trusted
operation model is common in real environments where one wants to get the
result of computation but is not willing to offer one’s own data to others [14].

4.3 Finding Frequent Patterns Longer Than One

After finding out F1, we have to sequentially discover frequent patterns longer
than one. At first, one of N servers is elected as a principal mining server.
To discover all frequent patterns longer than one, the principal mining server
assigns 1 to variable k and executes the following steps.

1. It produces Ck+1 by self-joining Fk in the same way as Apriori algorithm [1].
It executes step 5 if Ck+1 is empty. Otherwise, it executes step 2.

2. For each candidate pattern CP in Ck+1, the server sends every site T a query
asking whether CP has ever occurred in T or not.
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3. Each site T sequentially inspects traffic data or the meta tables, which will
be described in Section 4.4, to determine CP ’s occurrence in T . An actual
answer of the query would be 1 or 0 as CP ’s occurrence. However, to pre-
serve the privacy of the site, the actual answer is perturbed by the retention
replacement [13,3].

4. For each query, the principal mining server aggregates the counts of the sites
answered 1 and the sites answered 0. Then, using the two counts, it con-
jectures the number of sites whose actual answers were 1. It then compares
that number with MinSup and constructs Fk+1, by choosing from Ck+1. It
finally increases k by 1 and calls step 1.

5. When it reaches this step, Ck+1 is empty. Therefore, it prints all the frequent
patterns discovered and then stops the execution of the algorithm.

4.4 Meta Tables to Quickly Determine the Occurrence or
Non-occurrence of Candidate Patterns

In the Apriori algorithm, patterns of length k can be regarded as candidate pat-
terns only when all of their sub-patterns are frequent. However, in the sequential
pattern mining with time constraints, even the patterns containing infrequent
sub-patterns can be treated as candidate patterns if all of their sub-patterns
occurring contiguously in the underlying patterns are frequent. Therefore, com-
pared to the mining techniques based on the original Apriori algorithm, the
sequential pattern mining with time constraints impose less requirement for pat-
terns to be treated as candidate patterns. As a result, more candidate patterns
are generated and, to accelerate the overall mining process, it is crucial to handle
each candidate pattern efficiently.

In this paper, we employs special-purpose meta tables in each site T for
speeding-up the process to decide the occurrence or non-occurrence of CP in T .

Meta tables for storing pairs of items satisfying MaxGap
Let m denote the number of frequent items. At first, the principal mining server
sends out the list of all frequent items to each site T . Then, site T lexicographi-
cally sorts the frequent items and assigns each frequent item the corresponding
lexicographic order. Site T then stores the name and lexicographic order of
each frequent item into the meta table called FreqItems. FreqItems consists of
two columns, ItemName and Order. Given a frequent item, ItemName and Order
store its name and lexicographic order, respectively.

The second meta table is OccTs OccBits. This table consists of three columns,
Order, OccTs, and OccBits. For each frequent item FI in the traffic data of T ,
Order stores the lexicographic order of FI, and OccTs stores the timestamp at
which FI occurred, and OccBits stores a bit-vector of length m whose ith bit
indicates whether or not the frequent item of lexicographic order i has ever
occurred within MaxGap after the occurrence of FI. We denote the ith bit of
OccBits as OccBits(i). OccTs OccBits can be constructed by scanning the entire
traffic data in site T . The number of tuples in OccTs OccBits is same as the
number of occurrences of frequent items in T .
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The third meta table is OccCnts. OccCnts consists of m + 1 columns, Order,
Cnt1, Cnt2, ... , Cntm. OccCnts has a tuple for each frequent item and therefore
contains m tuples. Let us consider the ith tuple of OccCnts. It has i as a value
of Order. As a value of Cntj , it has the number of occurrences of the frequent
item of order j whose timestamps are within MaxGap after the occurrences
of the frequent item of order i. The ith tuple of OccCnts can be populated by
queryingOccTs OccBits.

An example of meta tables maintained within a single site is shown in Fig. 1.
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Fig. 1. An example of meta tables maintained within a single site

Determining the occurrences or non-occurrences of candidate patterns
The algorithm to determine the occurrences or non-occurrences of candidate
patterns using the meta tables has the following 4 steps.

1. Divide a candidate pattern
Let CPn = 〈I1, I2, ..., In〉 denote a candidate pattern with n items. We first
divide CPn into n − 1 sub-patterns each of which consists of two adjacent
items of CPn. The jth sub-pattern of CPn is denoted as SPj = 〈Ij , Ij+1〉
(j = 1, 2, ..., n − 1).

2. Determine the execution orders of the sub-patterns
Sub-patterns are executed on the meta tables and their results are joined
with those of other sub-patterns. If we are able to discover the optimal
execution orders which minimize the sizes of intermediate results, then we
can determine the occurrence or non-occurrence of a candidate pattern as
early as possible. The simplest way to find out the optimal execution orders
is to consider all the possible combinations of execution orders and to choose
the one which will produce the smallest intermediate results. However, there
are (n − 1)! distinct combinations for n − 1 sub-patterns and thus such a
simple approach is not scalable to large n. Therefore, we employ the following
greedy algorithm which quickly discovers near-optimal execution orders.
(a) We choose the sub-pattern which will have the smallest result set size,

and let 1 be its execution order. We then assign 1 to variable k.
(b) Let us assume that the execution order of SPj has just been decided

as k. To decide the sub-pattern of execution order k + 1, we decrease j′
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from j − 1 to 1 until we find SPj′ whose execution order is not decided
yet. Also, we increase j′′ from j + 1 to n − 1 until we find SPj′′ whose
execution order is not decided yet.

(c) If neither SPj′ nor SPj′′ exists, we stop the execution of the greedy
algorithm. However, if SPj′′ does not exist but SPj′ exists, then we let
k + 1 be the execution order of SPj′ . On the contrary, if SPj′ does not
exist but SPj′′ exists, then we let k + 1 be the execution order of SPj′′ .
If both SPj′ and SPj′′ exist, then we choose the one which will have
a smaller result set size and let k + 1 be its execution order. If their
result set sizes will be same, then we choose the one farther from the
corresponding end. This reduces the possibility of the absence of either
SPj′ or SPj′′ in the next step and therefore enables to obtain a better
combination of execution orders.

(d) We increase k by one and return to step 2(b).
In the middle of this greedy algorithm, there is a step to calculate the result
set sizes of sub-patterns. The result set size of SPj = 〈Ij , Ij+1〉 is equal to the
number of occurrences of item Ij+1 within MaxGap after the occurrences of
item Ij . The result set size of a sub-pattern can be easily obtained by using
two meta tables, FreqItems and OccCnts, who were explained above.

3. Execute the sub-patterns and join their results
According to the execution orders obtained in step 2, we execute all sub-
patterns one by one while joining their intermediate results. That is, for
each k from 1 to n − 1, we execute the following steps.
(a) For the two items of the sub-pattern whose execution order is k, we find

their lexicographic orders using FreqItems. Let p and q be the lexico-
graphic orders of the preceding item and the succeeding item,
respectively.

(b) We execute the following SQL statement to obtain the result set RSk of
the sub-pattern of execution order k.

select p, OccTs, q // p and q are not column names but constants
into RSk

from OccTs OccBits
where Order = p and OccBits(q) = 1;

(c) We join the result set RSk with JRSk−1, the intermediate result set
obtained by sequentially joining all the result sets of sub-patterns of
execution orders from 1 to k − 1, producing a new intermediate result
set JRSk. For a simpler explanation, let us rename the tables to be
joined as follows. If the sub-pattern of execution order k is on the left
of the sub-patterns of execution orders from 1 to k − 1, then we rename
the sub-pattern of execution order k as TA and the intermediate result
set JRSk−1 as TB. Otherwise, we rename the sub-pattern of execution
order k as TB and the intermediate result set JRSk−1 as TA. Then, the
conditions for a tuple ta of TA to be joined with a tuple tb of TB are like
the following:
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– Join condition 1: The last item of ta must be identical to the first
item of tb.

– Join condition 2: The gap from the timestamp of tb’s first item to
the timestamp of ta’s last item must not be larger than MaxGap.

(d) We check if the join result JRSk is empty. If so, we proceed to step 4.
Otherwise, we increase k by one and return to step 3(a).

4. Determine the occurrence or non-occurrence of a candidate pattern
We check if the final result set of step 3 is empty. If so, we conclude that the
candidate pattern being considered has never occurred in this site. Other-
wise, we judge that there is at least one occurrence of the candidate pattern.

Meta table to quickly judge the non-occurrence of a candidate pattern
Apriori algorithm joins frequent patterns of length n with themselves to generate
candidate patterns of length n + 1.

Let {CPn} denote the set of candidate patterns of length n. Also, let {CP ′
n}

denote the set of candidate patterns in {CPn} whose occurrences were detected
in the site. Now, let us consider a candidate pattern of length n+1, CPn+1, deliv-
ered to the site most recently. If we break CPn+1 into two sub-patterns of length
n, CPn+1[1..n] and CPn+1[2..n+1], then both of them are certainly elements of
{CPn}. The prerequisites for CPn+1 to occur in the site are the occurrences of
both CPn+1[1..n] and CPn+1[2..n+1]. Therefore, if either CPn+1[1..n] /∈ {CP ′

n}
or CPn+1[2..n + 1] /∈ {CP ′

n} is satisfied, then we can quickly recognize the non-
occurrence of CPn+1 without looking up the meta tables. We implement this
pruning method by maintaining a meta table named OccCandPatt in each site.
OccCandPatt stores the string representation of each candidate pattern whose
occurrence has ever detected in the underlying site.

This pruning method enables to quickly judge the non-occurrence of a can-
didate pattern but increases the size of OccCandPatt continually. However, note
that this method requires only the candidate patterns of length n in order to
determine the non-occurrence of a candidate pattern of length n + 1. Therefore,
when the site receives from the principal mining server a candidate pattern of
length n+1 for the first time, it removes the candidate patterns of length n− 1.

5 Performance Evaluation

5.1 Environment for Experiments

In experiments, we collected 5,024,295 traffic data by Ethereal during 5 days.
From them, we extracted 747,000 traffic data related to 736 IP addresses. The
average inter-arrival time is 462.38 msec.

We compared the performances of three methods: Naive, OccTs, and Oc-
cTs+OccCandPatt. In order to discover F1, Naive uses the retention replace-
ment for all traffic data. Furthermore, it scans the original traffic data to verify
whether every candidate is actually frequent. OccTs discovers F1 by using the
N -repository server model and Fk (k ≥ 2) by the retention replacement. OccTs
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decides whether a candidate pattern is frequent by searching meta tables Oc-
cTs OccBits and OccCnts. Finally, OccTs+OccCandPatt, which is basically based
on OccTs, additionally uses meta table OccCandPatt. Furthermore, both OccTs
and OccTs+OccCandPatt employ a greedy algorithm to determine the execution
order of sub-patterns.

As a measure for evaluating accuracy, we used Recall and Precision. Recall
indicates how much fraction are mined from all the actually frequent ones. Pre-
cision indicates how much fraction of mined patterns are actually frequent. As
a performance measure, we used the average elapsed times in mining sequential
patterns of the maximum length 6.

The hardware platform is the Pentium IV 3.0GHz PC equipped with 512
Mbytes main memory and 80 Gbytes hard disk of 7200RPM. The software plat-
form is the Windows XP and the Java 2 Runtime Environment 1.4.2.

Since we got quite good performances in our parameter setting experiments,
we set MinSup,MaxGap, the number of sites, and the number of servers to 0.2,
20, 10, and 5, respectively in the following experiments.

5.2 Analysis of Accuracy

In order to evaluate accuracy of the proposed N -repository server model, we
compared Recall and Precision of OccTs and Naive. Because the accuracy of both
OccTs and OccTs+OccCandPatt is the same, we show only Naive and OccTs.

We evaluated Recall and Precision with different probability p. We set the
number of sites to 50. Fig. 2 shows the results with p of 0.51 to 1. We note that
the retention replacement is inapplicable with p of 0.5 [13].

The results show that, in Naive and OccTs, both Recall and Precision get
higher as p gets close to 1. This is due to the retention replacement used in
both methods to find frequent sequential patterns whose length is longer than 1.
OccTs performs 1.04 to 1.20 and 1.01 to 1.12 times better than Naive in Recall
and Precision, respectively.

Naive is inapplicable to analyzing real Internet traffic data because it has to
know all the items likely to occur in advance. Furthermore, in the above two
experiments, OccTs showed accuracy higher than Naive.

5.3 Analysis of Performance

In order to evaluate the performance of OccTs and OccTs+OccCandPatt, we
compared them with Naive in terms of the elapsed time for mining. We measured
the elapsed time with different numbers of traffic data in each site. We set
probability p in retention replacement to 1 in order to evaluate the average
elapsed times of all the methods fairly. Fig. 3 shows the result.

We observe that, in all three methods, as the volume of traffic data gets larger,
the elapsed time increases. This is because more frequent patterns appear with
a larger volume of traffic data. OccTs performed 1.60 to 2.38 times better than
Naive. It stores all pairs of frequent items that occur within MaxGap into a
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meta table OccTs OccBits and quickly determines whether candidate patterns
occur by joining these pairs without accessing the network traffic data.

OccTs+OccCandPatt ran 1.01 to 1.10 times faster than OccTs. By referring to
OccCandPatt, it examines whether candidate patterns have ever occurred in the
site before searching OccTs OccBits. Therefore, it achieves the pruning effect in
the mining process. That is, the total elapsed time decreases because the number
of candidate patterns to be searched in OccTs OccBits gets smaller.

6 Concluding Remarks

In this paper, we have proposed a practical method for sequential pattern mining
on network traffic data. The proposed method preserves privacy of sites and
provides high accuracy of mining results. The proposed method can be used for
finding frequent sequential visiting patterns of web pages. The mining results
can be applied to prefetching of web pages and load balancing in web servers.

The contributions of the paper are summarized as follows: First, we have
proposed a privacy preserving method that mines frequent sequential patterns
from network traffic data. Our method uses the N -repository server model that
operates as a single mining server and also employs the retention replacement
technique that changes the answer by a given probability. Second, we have de-
signed meta tables maintained in each site so as to quickly determine whether
candidate patterns ever occurred in the site. Third, we have demonstrated the
correctness and the efficiency of the proposed method via extensive experimen-
tation with real-world network traffic data.
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