
A Novel Approach to detect Copy Number Variation using 
Segmentation and Genetic Algorithm

ABSTRACT 
Among many forms of genomic variations, copy-number 
variations (CNVs) can be defined as gains or losses of several 
kilobases to hundreds of kilobases of genomic DNA.  Since many 
CNVs include genes that result in differential levels of gene 
expression, CNVs may account for a significant proportion of 
normal phenotypic variation. Some scientists demonstrated that a 
large portion of overlapping, currently known common human 
CNVs, were smaller in his dataset. However, previous 
experimental studies, performed primarily by a-CGH techniques, 
are limited to detection of CNVs of large-sized CNVs. Efficient 
algorithms for finding small-sized CNVs are essential. In our 
paper, we propose a novel approach to find small-sized CNVs on 
a-CGH data which is a sequential 2-dimensional clustering 
method. The algorithm we propose is robust to some level of 
noise. And regardless of the size of probes, our algorithm can find 
CNVs consisting of small number of probes. 
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1. INTRODUCTION 
Variation in the human genome is present in many forms, 
including Single-Nucleotide Polymorphisms (SNP), small 
insertion-deletion polymorphisms, variable numbers of repetitive 
sequences, and genomic structural alterations [16]. Among these 
genomic variations, Copy-Number Variations (CNVs) can be 
defined as gains or losses of several kilobases to hundreds of 
kilobases of genomic DNA among phenotypically normal 
individuals [6]. Since many CNVs include genes that result in 
differential levels of gene expression, CNVs may account for a 
significant proportion of normal phenotypic variation [4]. 

Recently, the researches relating to the genomic variation of 
human genome are being actively carried out. Two representative 

platforms to assess CNVs are as follows: (1) comparative analysis 
of hybridization intensities on SNP genotyping array (2) 
comparative genomic hybridization with a Whole Genome 
TilePath (WGTP) array. WGTP platform comprises more than 90% 
of the euchromatic portion of the human genome and microarray 
Comparative Genomic Hybridization (a-CGH) data of human 
genome are being generated. In this paper, we analyzed the data 
from WGTP platform because this platform is prevalent in current 
CNV assay. 

Perry [9] repeated the comparison with CNVs called by the 
Redon [12], revealed that 213 of 264 overlapping CNVs (80%) 
were smaller in his dataset, with 154 of the 264 CNVs (58%) 
smaller by more than 50%, and concluded that the total genomic 
content of currently known common human CNVs is likely to be 
smaller than previously thought. However, previous experimental 
studies, performed primarily by a-CGH techniques, are limited to 
detection of CNVs of large-sized CNVs, tens or hundreds of 
kilobases [14]. Efficient algorithms for finding small-sized CNVs 
are essential, and we focused on this problem. 

In our paper, we propose a sequential 2-dimensional clustering 
method to find small-sized CNVs. Our algorithm uses log ratio 
value and position information from WGTP sample and finds 
segments which are used for scoring phase with six parameters. 
We assign scores to the probes based on the average log ratio 
value of the segments, and find CNVs by selecting top scoring 
probes. Genetic Algorithm (GA) helps to estimate six optimal 
parameters because their search spaces are wide. GA has excellent 
exploration power that provides the capability of escaping from 
local optima and working well when solutions to a problem 
contain complex interacting part [2]. 

There are two types of CNVs. One is called gain, which means 
relatively duplicated part compared with a reference sample. The 
other is called loss, which means relatively deleted part compared 
with a reference sample. There could be a possibility that the 
segments having high intensity ratio which is supposed to be a 
gain could not be a genomic duplication since a-CGH data have 
some level of noise in acquired hybridization intensity ratios. The 
proposed algorithm is robust to some level of noise. Regardless of 
the size of probe, our algorithm can find CNVs consisting of small 
number of probes. In other words, if the a-CGH dataset is from 
higher-resolution tiling arrays, our algorithm can detect small-
sized CNVs. 

2. RELATED WORKS 
2.1 SW-ARRAY 
SW-ARRAY [11] is a popular method to find CNVs on a-CGH 
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platform. SW-ARRAY adapted the Smith-Waterman dynamic 
programming algorithm to provide a sensitive and robust analytic 
approach for CNV detection. This method scans through a-CGH 
data using one threshold and finds a segment while giving penalty, 
if some unexpected data is inserted into the segment. Finally this 
method applies robustness value to the segments found to select 
only sensitive segments. SW-ARRAY method takes its basic idea 
from Smith-Waterman algorithm. The major feature of Smith-
Waterman algorithm is to find a segment which is the longest and 
continuous as far as possible. SW-ARRAY also can find long 
consecutive gain or loss from a-CGH data. However this method 
is not suitable for finding short segments. Still SW-ARRAY is 
popular in many researchers due to its simple principle. 

2.2 CNV-FINDER 
The purpose of CNV-finder [3] is to find proper threshold to 
minimize false rate. False positive and false negative are 
important problem in CNV detection. CNV-finder finds optimal 
value to minimize false rate by additional experiments and 
maximize the number of CNV found by statistical approach. They 
hypothesize that the majority of observations are normally 
distributed around a log2 ratio of zero. They used multiples of the 
SDe (N*SDe(Standard Deviation)) to define positive and negative 
thresholds beyond which ratios are unlikely to occur by chance in 
the absence of CNV. CNV-finder is a representative detection-
method like SW-ARRAY and has some advantages compared 
with SW-ARRAY. This method can minimize false rate. Since it 
finds CNVs by only SD values without considering the length of 
the CNVs, it is not robust to the noise of a-CGH data. 

2.3 OTHER METHODS 
There are many algorithms other than two methods previously 
mentioned: HMM [5], CGHseg [10], CLAC [15]. Lai [7] 
compared 11 different algorithms for analyzing array CGH data 
and detailed the relative merits of these methods. Lai [7] 
computed the Receiver Operating Characteristic (ROC) curves to 
quantify sensitivity and specificity for various levels of signal-to-
noise ratio and different sizes of abnormalities. Most algorithms 
did work well in detecting aberrations with large width and high 
SNR (Signal-to-Noise Ratio). The experimental results of Lai [7] 
revealed that most algorithms did not reliably detect the 
aberrations with small width and low SNR because the signal is 
too weak to be differentiated from the noise.  

2.4 GENETIC ALGORITHM 
Evolutionary Computation (EC) is a population-based stochastic 
iterative optimization technique based on the Darwinian concepts 
of evolution. Inspired by these principles, like survival of the 
fittest and selective pressure, EC tackles difficult problems by 
evolving approximate solutions of an optimization problem inside 
a computer. An algorithm based on EC is called an Evolutionary 
Algorithm (EA) [1]. GA is the most prominent example of EA. 
GA is widely used to solve a problem which has to find an 
optimal solution [8]. GA begins with a “population” which is a set 
of encoded chromosomes, and evolves population similar with 
real world evolution. During evolution, a fitness function 
measures the degree of optimum in a set of chromosomes and the 
set of chromosomes are processed under selection and genetic 
operators.  

3. ALGORITHM 
3.1 SYSTEM OVERVIEW 

 
Figure 1: Overall Process of our algorithm 

In the first stage, the optimal parameters are estimated by GA. 
Parameters are estimated using one HapMap [13] sample which is 
the target for CNV detection. The obtained parameter from first 
stage is used in the second stage. CNV finding algorithm which is 
second stage consists of three phases as shown in Fig. 1. The 
segment is defined as a small subset of probes. A short segment 
consists of probes whose log ratio values are similar and whose 
positions are consecutive, with some gapped probes inside. The 
log ratio is the quantified expression value of the Cyanine 3 to 
Cyanine 5 intensities for each probe. The first phase is to find 
initial segments from a-CGH data. The second phase is to find 
shorter segments from segments generated by first phase. 
However, only some of segments that can be divided into shorter 
ones are chosen. Then we assign scores to each probe according to 
the average log ratio value of all the probes in the short segments 
to which the probe belongs, and determine whether the probe is 
gain or loss. 

3.2 PARAMETER ESTIMATION USING 
GA 
There are six parameters in our algorithm, which are shown in Fig. 
2. Six parameters divide the data into segments through sequential 
2-dimensional clustering procedure. Log ratio parameter and 
weight of log ratio parameter decide the size of segment. And 
position parameter and weight of position parameter decide the 
continuity of segment. Different segments can be generated 
according to these parameters, and finally these segments 
influence CNV labeling process. Thus we have to find the best set 
of parameter combination whose range is wide as shown in Fig. 2.  

3.2.1 Encoding scheme for parameters 
In this paper, we encode a solution like as Fig. 2. One 
chromosome is composed of six parameters which can be 
presented by real numbers. The reason for not using binary 
encoding schema is that we want to maintain the building block 
which represents the solution fitted within our encoding boundary.  

 
Figure 2: Encoded individual or chromosome 
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3.2.2 Selection mechanism and genetic operators 
In our system, selection mechanism is a tournament scheme and 
genetic operators are one point crossover and mutation. In our 
system, crossover rate is 0.9 and mutation rate is 0.03. Two rates 
0.9 and 0.03 are obtained by set of experiments. 

3.2.3 Fitness evaluation 
The fitness function measures the quality of the chromosomes. 
Therefore, the better fitness of chromosome is measured, the more 
possibilities that the chromosome is selected for reproduction 
exist, and the more parts of its genetic material will be passed on 
to the next generations [1]. In this paper, fitness function is the 
number of the segments called CNV candidates which consist of 
low or high log ratio value of probes. CNV candidate is defined as 
a segment of consecutive probes that have log ratio values lower 
or higher than average of log ratio value of all the segments. The 
reason why we use this fitness function is that the more segments 
which consist of low or high log ratio values are generated, the 
more correct scoring value of the probes can be calculated. 

3.3 CNV finding algorithm 
Detecting CNVs from a-CGH data is same as finding a continuous 
segment having similar log ratio values. In this paper, we propose 
a novel algorithm to segment log ratio values of a-CGH data 
efficiently. Our algorithm consists of three main phases 
mentioned at the beginning of the section 3.  

The first phase of our algorithm is suggested in order to 
generate temporary segments while considering log ratio values 
and position values of probes from given sample. Our algorithm 
uses three parameters which are log ratio parameter, position 
parameter and minimum length parameter chosen from GA. From 
now on, we call the probe an element in a segment. 

The difference between any two consecutive log ratio values in 
the same segment should not exceed the log ratio parameter which 
is a result of the GA. Because input data are sorted by log ratio 
value, we can easily get elements which have similar log ratio 
values. Note that the positions within one segment are not ordered 
since segments are built using log ratio value. Because position 
values should be considered for continuity of the segment, our 
algorithm sorts elements in each segment by their position. The 
difference of positions of any two adjacent elements in a segment 
should not exceed the position parameter which is also a result of 
the GA. While considering position parameter, the minimum 
length of segment should be satisfied. If a segment does not 
satisfy the minimum length, the consecutive elements can be 
included into that segment. As a result, segments are composed of 
the elements which have continuous position values and similar 
log ratio values. Therefore elements in a same segment can have 
same label. 

In the first phase, outlier probes can be included in the 
segments according to those three parameters mentioned above. 
However, outliers are not consecutive and usually their log ratio 
values are abnormally high or low. In this case, the log ratio 
parameter and position parameter filter these probes out, and 
made them be exceptionally short segments. The parameter, 
minimum length of segments, prunes these segments. As a result, 
outlier probes are not included in any segments. Outlier probes 
have no chance to be labeled as gain or loss since their score is not 
calculated at all. 

After phase 1, our algorithm checks whether the segments 

which are identified in the first phase can be divided into shorter 
segments or not. The possibility of each segment being divided 
further is determined by the Fselect_measeure() function as follows:  

 

 
 
This function measures how the elements of a segment are 

distributed and how many there are missing elements in this 
segment. Well divided segment has the property that it has a few 
number of missing elements, and the position distance between 
the first element and the last element is short. If a candidate 
segment has many missing elements or the position distance 
between the first element and the last element is long, this 
segment should be divided into shorter segments further. To 
choose relatively long segments, ones whose Fselect_measeure() is 
greater than the average of Fselect_measeure() of all segments are 
selected as long segments. 

The inputs of the second phase are segments selected by the 
first phase. Through this phase, we can get shorter and more 
continuous segments that have much more similar log ratio value 
than the input segment. In this phase, our algorithm uses three 
parameters which are two weights and maximum length of 
segment. The two weights are related with new log ratio 
parameter and new position parameter. 

Input segments are sorted by log ratio value and shorter 
segments are generated using new ratio parameter. The elements 
of newly created segments are sorted by their position and the 
shorter segments are generated using new position parameter. 
While generating new segment, the maximum length of segment 
should be considered. The formulas for estimating the new log 
ratio and position parameters are following. GA finds optimal 
weight value, Wr and Wp for new log ratio parameter and position 
parameter, respectively, which reflect the length of long segments. 
These two new thresholds have a primary role to build shorter 
segments.  

 

 
 

Then, our algorithm assigns scores to each probe according to 
the short segments to which that probe belongs. 

Let the short segment be si and let the average of element’s log 
ratio values of si be avgi. After segmentation process, each probe 
may belong to one or more short segments or may not belong to 
any segments. Therefore, the probe may have a set of avgs, {avgi | 
the probe belongs to si}.  

If every avgs of the probe are commonly low, then the probe 
can be considered as loss. And if every avgs of the probe are 
commonly high, then the probe can be considered as gain. 
However, if the variance of avgs is high, then this probe can be 
neither gain nor loss. For example, suppose that the probe belongs 
to two segments s1 and s2, where avg1 = -0.5 and avg2 = 0.5 (-0.5 
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and 0.5 are relatively high values). Then there is high possibility 
that the log ratio value of the probe is noisy, and we can ignore 
the probe. 

By the observations above, we can build a score measure as 
follows: 

 
, where S is the set of avgs of the probe. We can easily know that 
the probe with a set of avgs which have lower variance and higher 
absolute the value of average can get a lower score. The probes 
with lower scores can be considered as gain or loss more certainly. 
Therefore, we can check top n probes, while increasing n. For 
example, the first 10 probes are considered as definitely gains or 
losses, and next 10 probes can also be gains or losses, but the 
reliability of the next 10 probes as gains or losses are not high as 
those of previous 10 probes.  

4. EXPERIMENTAL RESULTS 
In this section, we describe the experimental results of parameter 
estimation process using GA and CNV finding algorithms. We 
used HapMap samples using array-based comparative genome 
hybridization with a genome-wide WGTP array consisting of 
~27000 large-insertion clones. The data is available on the web 
site [17]. The data were using WGTP array with dye-swap for 269 
HapMap individuals and using a single male reference, HapMap 
individual NA10851 [17]. We used HapMap sample, NA07055 
for experiment. Among 23 chromosomes, we used chromosome 
19. Our approach can be applied to any chromosome and any 
HapMap sample. 

4.1 Parameter estimation results 
GA found the optimal result within 200 generation. The value of 
190th generation was the optimal solution. The following Table 1 
shows optimal solution, which means the best combination of 
parameters.  
 

Table 1: Found optimal parameters by GA 

HapMap sample, NA07055 parameters by GA 

Set of 
optimal 

parameter 

Log ratio parameter 0.086 

Position parameter 6 

Weight of log ratio 0.008 

Weight of position 0.01 

Minimum length of Segment 4 

Maximum length of Segment 26 

 

Table 2: Top 10~90 probes from out result 
The number 

of Top 
scoring 

probes(case) 

The range of scores 
Gain 

probes 
Loss 

probes 

10 -0.12689 ~ -0.08610 6 4 
30 -0.12689 ~ -0.06770 11 19 

50 -0.012689 ~ -0.05080 15 35 

70 -0.012689 ~ -0.04442 28 42 

90 -0.012689 ~ -0.04131 37 53 

 

4.2 Analysis of algorithm result 
The experiments of CNV finding algorithm consist of the two 

parts. The first part describes the relation between the number of 
top scoring probes and our result. The second part describes the 
comparison of our result with other methods. We made 
comparison with other algorithms for all the cases in Table 2. 
Here we exhibited the comparison result for top 70-case. 

4.2.1 The first part of algorithm experiment 
Table 2 shows the relation between the number of top scoring 
probes and the number of probes that can be gain or loss. As we 
have already mentioned, the probes with lower scores are 
considered as gain or loss more certainly. Therefore, while we 
choose top n scoring probes, we increase n so that chosen probes 
can be considered to be gain or loss, and also can compose long 
CNVs. 

4.2.2 The second part of algorithm experiment 
Fig. 3 shows the raw a-CGH data and CNVs that is composed of 
70 probes found by our algorithm. The coordinate x indicates the 
position of each probe in a-CGH data. In Fig. 4 and 5 the 
coordinate y indicates the position of each probe in a-CGH data. 
Fig. 4 shows the comparison of our algorithm with SW-ARRAY 
for the same HapMap sample NA07055. SW-ARRAY found two 
CNVs, one is gain and the other is loss, as shown in the left and 
right graph of Fig. 4, respectively. Our algorithm found 23 CNVs, 
while SW-ARRAY found by only 2 CNVs, and the length of 
CNVs was shorter. There are overlapped areas found by two 
methods, but these areas are not wide because of the difference in 
the basic idea of two algorithms. SW-ARRAY is based on the 
Smith-Waterman algorithm which finds the longest segments if 
possible while giving penalty when unexpected value is 
encountered. However, our algorithm divides one sample into 
short segments as much as possible not accepting large 
unexpected value. Fig. 5 shows the comparison of our algorithm 
with Redon’s. We can see that CNVs found by our algorithm and 
Redon’s CNV event loci were not exactly matched, because our 
experiment was carried out only using NA07055, Redon’s result 
was CNV regions which are the union of many CNVs from all of 
270 HapMap samples.  

5. CONCLUSION 
The main contribution of this paper is to suggest a novel approach 
which can find small-sized CNVs. In order to build short 
segments, several parameters are used, and these parameters are 
obtained through genetic algorithm. The main algorithm to find 
short segment consists of three phases. Former two phases find 
short segments. In the third phase, our algorithm assigns scores to 
each probe, and determines whether the probe is gain or loss. The 
experiments were carried out with chromosome 19 of HapMap 
sample, NA07055. The result of experiments demonstrates that 
our algorithm is able to find small-sized CNVs which could not be 
found using other algorithms. We cannot be sure that all the 
CNVs found by our algorithms are real ones until biological 
validation like RT-PCR is performed. However, algorithms which 
can find small-sized CNVs are essential since currently known 
common human CNVs are likely smaller than previously thought. 
Our experimental results show that CNVs which were not 
detected by Redon’s and/or SW-ARRAY method were detected 
by our algorithm. We are currently investigating lowering the 
false rate for future works.  
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Figure 3: Raw aCGH data and result of our algorithm 

 

 
Figure 4: Comparison of our algorithm with SW-ARRAY 

 

 
Figure 5: Comparison of our algorithm with Redon's CNV 

event loci 
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