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Abstract—In this paper, we propose MV-FTL, a multi-version flash transition layer (FTL) that provides page-level multi-version
management. By extending a unique characteristic of solid-state drives (SSDs), the out-of-place (OoP) update to multi-version
management, MV-FTL can both guarantee atomic page updates from each transaction and provide concurrency without requiring
redundant log data writes as well.
For evaluation, we first modified SQLite, a lightweight database management system (DBMS), to cooperate with MV-FTL. Owing to the
architectural simplicity of SQLite, we clearly show that MV-FTL improves both the performance and the concurrency aspects of the
system. In addition, to prove the effectiveness in a full-fledged enterprise-level DBMS, we modified MyRocks, a MySQL variant by
Facebook, to use our new Patch Compaction algorithm, which deeply relies on MV-FTL. The TPC-C and LinkBench benchmark tests
demonstrated that MV-FTL reduces the overall amount of writes, implying that MV-FTL can be effective in such DBMSs.

Index Terms—MVCC, FTL, Flash Translation Layer, SSD, Concurrency Control
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1 INTRODUCTION

SOLID-state drives (SSDs) are being increasingly adopted
in the DBMS research literature [1], [2], [3], [4], [5], [6].

In particular, there exists a unique and interesting character-
istic of SSDs called the out-of-place (OoP) update. Because
of the inability to overwrite in NAND-flash-memory, SSDs’
main storage media, SSDs process updates in an append-
only manner [7]; instead of overwriting existing data, SSDs
redirect the updated data to an empty page and move the
logical-to-physical (L2P) mappings onto them. When there
is no free space to append new pages, an SSD triggers a
garbage-collection mechanism that reclaims the space occu-
pied by old and unnecessary page versions.

The way an SSD handles an update is quite familiar
in the DBMS literature — in practice, the approach can
easily be found on many DBMSs that implement multi-
version concurrency control (MVCC) [8], [9], [10]. In MVCC,
a DBMS handles updates in an append-only manner; that
is, instead of replacing the old version with the new one,
DBMS simply appends the new one, keeping old ones intact.
Consequently, a DBMS stacks multiple versions of each
record and serves concurrent accesses to a record in more
flexible ways by using those multiple versions. Moreover,
a DBMS also has garbage-collection mechanisms to reclaim
the space occupied by expired versions.

However, being unaware of the SSD, a DBMS imple-
ments MVCC in its own way, without utilizing the OoP up-
date characteristic of SSDs. In other words, a DBMS imple-
ments the append-only updates by itself, without knowing
an SSD already handles updates in an append-only manner.
Moreover, a DBMS executes garbage-collection operations
to secure free space, which may overlap with SSD garbage
collection.

From this observation, we propose MV-FTL, a multi-
version flash translation layer (FTL), which is the core
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software layer of an SSD. The proposed solution explicitly
manages multiple page versions and serves the multiple
versions to a DBMS. More specifically, MV-FTL gathers the
updated pages from each transaction into a new data struc-
ture called diffL2P, a logical data structure that represents
a version. MV-FTL serves these diffL2Ps to transactions in
an atomic fashion; that is, a transaction can see either all
the pages in a diffL2P, or none of them. In addition to this
atomic update, MV-FTL manages the commit orders be-
tween diffL2Ps, enabling the snapshot isolation [11] between
updates from transactions.

Consequently, MV-FTL relieves the burdens of a DBMS
to implement MVCC. 1 By cleverly exploiting the OoP
update characteristic, MV-FTL provides the host the ability
to manage multiple page versions without explicitly writ-
ing any additional log data. In addition, MV-FTL garbage-
collects unnecessary page versions gracefully by extending
the SSD’s garbage-collection scheme, which will signifi-
cantly reduce the MVCC garbage-collection overhead.

To show the performance and concurrency implications
of MV-FTL, we first modified SQLite [12], one of the most
popular DBMSs for mobile applications, and conducted
several experiments using well-known benchmarks. In ad-
dition, to demonstrate the usefulness of MV-FTL in more
sophisticated DBMSs, we modified MyRocks [13], a MySQL
variant that is widely adopted by Facebook. Then, by run-
ning several benchmark tests on an MV-FTL emulator, we
confirmed the potential benefits of MV-FTL on MyRocks.

In summary, the contributions of this paper are as fol-
lows:

• We propose a novel MV-FTL that provides page-
level multi-version management to the host. MV-FTL

1. MV-FTL will not fully replace MVCC, because MV-FTL can man-
age versions only in NAND page units, which is too coarse-grained
to be used in enterprise-level DBMSs, where versions are managed
in tuple units. Nevertheless, MV-FTL can still replace the MVCC of
MyRocks or MongoRocks, which will be discussed later.
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guarantees the atomicity of transaction updates and
provides snapshot isolation on SSDs in NAND page
units. Because these come from the intrinsic OoP
update characteristic, MV-FTL requires no additional
log or data writes from the host.

• To minimize resource usage for multi-version man-
agement, we devised an efficient purge algorithm in
MV-FTL. The algorithm purges unnecessary diffL2Ps
without affecting other transactions.

• We implemented MV-FTL on OpenSSD, modified
SQLite to cooperate with MV-FTL, and ran RL Bench-
mark and TPC-C on top of them. Because SQLite has
a lightweight storage manager, the evaluations clearly
showed the real effectiveness of MV-FTL in both
the performance and concurrency aspects. MV-FTL
improves SQLite’s performance by up to 2.8x and
significantly reduces the number of write operations.
Furthermore, MV-FTL can handle multiple concur-
rent tasks gracefully, maintaining the transaction-
processing performance even with conflicting read
accesses.

• To prove the usefulness of MV-FTL in more sophisti-
cated DBMSs, we modified MyRocks, implementing
our novel Patch Compaction algorithm, which is based
on MV-FTL. By running TPC-C and LinkBench, we
proved that using MV-FTL and Patch Compaction
could reduce the total number of bytes written to an
SSD by up to 40%.

Meanwhile, many researchers have already proposed us-
ing the OoP characteristic for processing DBMS transactions
[14], [15], [16]. In practice, those have successfully improved
transaction-processing performance by exploiting the OoP
update to guarantee atomic updates. However, from a con-
currency point of view, because they cannot distinguish
orders between committed updates, they need additional
support from the DBMS to distinguish committed updates
from each transaction, or they may suffer from concurrency
anomalies such as non-repeatable reads or phantom reads [11].

The rest of the paper is organized as follows: First,
in Section 2, we briefly review the necessary background
knowledge, including FTL and MVCC. In Section 3, we
present the basic idea behind MV-FTL, including the purg-
ing of unnecessary versions, and its durability. In Section
4, we describe the implementation of system modules, i.e.,
MV-FTL, SQLite, and other intermediate layers, and the
evaluation using RL Benchmark [17] and TPC-C [18]. In Sec-
tion 5, we present the TPC-C and LinkBench [19] evaluation
results on RocksDB in an emulated MV-FTL environment.
In Section 6, we introduce some previous studies related to
our work. Finally, in Section 7, we conclude our paper and
present ideas for future research.

2 BACKGROUNDS

2.1 FTL

NAND flash memory is practically a very different media
compared with the traditional block devices such as hard
disk drives (HDDs), because it has unique characteristics
— i.e., asymmetry in the units of read/program and erase
operations, limited endurance, and so on. In particular, once

Fig. 1: Process of a write operation in FTL. L2P and flash
page with diagonal stripes indicates a newly updated page,
and shaded flash pages indicate the invalidated ones. When
a write operation with LBA x and data D′x is performed (1),
the FTL writes new data into a free page in the NAND flash
memories (2). The FTL then updates an L2P mapping for x
(3) and invalidates the old flash page (4). Finally, the FTL
issues an I/O completion message (5).

written (programmed), a page can only be overwritten after
being erased, whereas read and program operations are
performed in NAND page units of 4 or 8 Kbytes each.
The erase operations are carried out in NAND block units,
with each NAND block comprising 64 or 128 pages. This
mismatch makes overwrite operations very costly in NAND
flash memories, i.e., to overwrite a single page, all the pages
in a block must be erased and reprogrammed. In addition,
the number of erase operations that a page can endure is
limited to usually a few thousand, and therefore, an erase
operation should be postponed as much as possible.

To overcome the problems above, most flash storages
have adopted a sophisticated software layer called flash
translation layer (FTL), that manages NAND flash memories
[7], [20].

The FTL handles page write operations in an append-
only manner. Figure 1 illustrates the way in which FTL
processes a page write operation. When a host overwrites
data D′x in a logical page, whose logical block address is x
(i.e., step 1), D′x is written to an empty page (step 2). The
FTL then updates the logical-to-physical (L2P) mapping,
L2P (x) ⇒ D′x in the L2P table (step 3) and invalidates an
old flash page (step 4). Finally, the FTL sends a complete
message to the host (step 5).

As the FTL continues appending, the number of empty
pages decreases to the point where there might be no more
empty pages to which to write. In such a case, as illustrated
in Figure 2, the FTL triggers a garbage collection, which
operates as follows:

1) FTL first picks a block to be garbage-collected, with
the selection being either arbitrary or via some
predefined criteria;

2) FTL finds every valid page, i.e., pages with a valid
L2P mapping in the L2P table, and moves the page
to a new block, modifying the L2P mapping accord-
ingly.

After garbage-collecting a block, the FTL increments the
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Fig. 2: Process of garbage collection in an FTL in which
valid pages are moved to a separate block, freeing up a
contiguous block of empty pages

number of empty pages by the number of invalid pages in
the block, where an invalid page means a page that has no
L2P mapping in the L2P table.

2.2 FTL-assisted transaction support

Many researchers have sought to improve the performance
of data processing systems by implementing atomicity with
OoP update characteristic of SSDs.

Prabhakaran et al. [14] proposed TxFlash. In TxFlash, the
host sends the list of pages to update by a transaction to
TxFlash before it starts updating. Then, TxFlash adds next-
link to each page from the transaction, so that next-links
of the pages form a cycle; that is, from the first to the
penultimate pages, the next-link points to the next page
(i.e., N+1 for the N-th page) while the link on the last
page points the first page. TxFlash keeps the updated L2P
mappings of on-going transactions separately from the main
L2P table until the last page of the transaction is written
to the NAND. In addition, by following these next-links,
TxFlash can distinguish succeeded updates from failed ones
after being powered off and on.

Ouyang et al. [15] proposed a new write command
interface, Write-Atomic(). The Write-Atomic() command is
used to deliver multiple discontinuous pages with a single
command transfer. Based on this command, they proposed
to transfer the page to be updated by a transaction all-at-
once. Then, upon receiving the Write-Atomic() command, the
SSD unpacks the pages and writes them onto a series of
free pages. While writing, the SSD marks the flag bit as ”0”
for all the pages except the last page and ”1” for the last
page, in order to tell if all the pages from the transaction are
successfully written. Similarly in TxFlash, the SSD keeps the
updated L2P mappings separately until the last page write
operation ends, applying the mapping changes just after the
last page is firmly written. In addition, after power off, the
SSD can find out if a series of updated pages are all done,
simply by checking the flag bits; by scanning backward,
the SSD simply discards the pages with flag ”0” before the
occurrence of a page with flag bit ”1” is found.

Kang et al. [16] proposed X-FTL. In X-FTL, the host tags
each page update from a transaction with the ID of the
transaction. Accordingly, X-FTL keeps the L2P mappings
from the transactions separately in the X-L2P table. After a
while, when a transaction is committed, the host notifies the
ID of the committed transaction to the X-FTL, and finally,
the X-FTL finds all the L2P mappings that belong to the
transaction and applies them to the main L2P table. In this

way, X-FTL assures the atomic propagation of transaction
updates.

All these approaches showed impressive improvements
in transaction-processing performances, more or less de-
pending on their target systems, workloads, and configu-
rations. However, in the perspective of isolation, the three
approaches described above have a common deficit. More
specifically, although they are free from dirty reads as they
can distinguish uncommitted pages from committed ones,
they may suffer from non-repeatable reads or phantom reads.
[11] For this reason, they need additional help from DBMSs
such as timestamp, multi-version management, and so on.

2.3 MVCC
To prevent conflicts between concurrent accesses, which
could result in concurrency anomalies [11], DBMSs have
traditionally used lock-based protocols [21]. By properly
using shared and exclusive locks, a DBMS can avoid the
conflicts in advance. However, at the same time, the locking
protocol has too many disadvantages to be used in DBMSs;
i.e., it requires very heavy overheads for detecting and
resolving deadlocks; it is not scalable for the multi-core
environment; it needs extra HW supports, and so on.

Meanwhile, MVCC takes an entirely different approach;
instead of reading and writing the same records, each
transaction on MVCC uses a virtual copy of each record
on its snapshot of the database, which is usually taken
when the transaction starts [11]. Accordingly, when other
transactions concurrently attempt to read the given record
from the database, the DBMS can service those requests by
using the old committed versions of the same record, so that
a read-only transaction does not have to wait for any other
transaction. For this reason, most DBMSs implement MVCC
to support more concurrency.

However, MVCC also adds non-trivial overhead to the
storage systems. As MVCC requires more space for stor-
ing multiple versions, the DBMS can suffer from space
overhead. To ensure that the database does not grow too
much, an MVCC DBMS invokes garbage collection opera-
tions, purging dead — i.e., old and unnecessary — versions
periodically, on demand, or both.

These garbage collection operations cause additional
updates on underlying storage devices, which, in the worst
case, could double the total number of pages written: once
at update time and again at purging time. In addition, the
DBMS must manage additional information to distinguish
each version, worsening the space overhead of MVCC.

3 MV-FTL
3.1 Basic idea
It is notable that the update schemes in MVCC and FTL
have many things in common, that is, both handle updates
in an append-only manner and have garbage-collection
mechanisms. The main difference is that only one version is
valid at a time in generic FTLs while multiple valid versions
can simultaneously exist in MVCC DBMSs. In other words,
FTL does invalidate the old version just after the host writes
a new page version, whereas MVCC does not; MVCC allows
multiple old but valid versions as long as transactions are
accessing the specific ones.
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Fig. 3: Overall structure of our MV-FTL architecture

Based on these observations, we extended an FTL to
manage multiple versions, namely MV-FTL. MV-FTL allows
each logical page to have multiple physical instances. In
this way, MV-FTL can provide MVCC-like multi-version
management. This version management would be more
efficient, because it does not require any additional log
writes.

MV-FTL is not intended to replace the MVCC implemen-
tation in enterprise-level DBMSs like [8], [9], [10]; rather,
MV-FTL helps improve the MVCC of such DBMSs by pro-
viding efficient page-level multi-version management. This
is mainly because MV-FTL manages multiple versions in too
coarse-grained units. While MVCC DBMSs usually manage
versions in variable-sized record units, MV-FTL can only
manage versions in fixed-sized NAND page units, 4 or 8
Kbytes each. Of course, for some embedded DBMSs such
as SQLite [12] and RocksDB [22], which manage versions
in more coarse-grained units — pages in SQLite and files
in RocksDB, MV-FTL can directly improve their version
management performance.

3.2 MV-FTL Architecture and Design
Figure 3 shows the overall architecture of MV-FTL. The core
of an MV-FTL consists of a main L2P table, diffL2Ps, and
Committed diffL2Ps List (CDL).

Each diffL2P corresponds to a version. When a trans-
action starts updating, it requests the MV-FTL to create a
new diffL2P. Upon request, the MV-FTL creates a diffL2P
and notifies the ID of the diffL2P back to the transaction.
From then on, the transaction writes every page with the
ID. MV-FTL then writes the page into a free NAND page.
However, at this stage, the MV-FTL does not directly update
the main L2P table as generic FTLs do; instead, the MV-FTL
registers the L2P mapping into the diffL2P, keeping the L2P
table and other diffL2Ps untouched. In this way, the MV-FTL
has multiple L2P mapping versions on diffL2Ps. Algorithm
1 shows how the MV-FTL handles writes from the host.

MV-FTL basically keeps every diffL2P and all its L2P
mappings only in the volatile main memory inside SSD,

thereby preventing uncommitted changes from being prop-
agated to the storage even if any system failure occurs.
MV-FTL only stores the L2P mappings on a diffL2P if the
corresponding transaction finishes updating and is commit-
ted, such that the committed changes from the transaction
become durable. (See the following Section 3.3)

In addition, we designed CDL into MV-FTL to manage
the chronological order between committed diffL2Ps. After
storing the L2P mappings of a committed diffL2P, MV-FTL
appends the diffL2P to the tail of the CDL.

One important property of CDL is that CDL can never
be empty; logically, there must be at least more than one
version. To keep this property, MV-FTL initially puts an
imaginary diffL2P node D0, which virtually represents the
original L2P table and has no additional L2P mapping in
itself. D0 shall be referenced by transactions as long as there
has been no committed diffL2P yet. Like other diffL2Ps,
MV-FTL will purge D0 as soon as a new diffL2P has been
committed and D0’s refcount becomes 0. Purging D0 is
almost free, because D0 contains no L2P mappings in itself.

3.3 Atomicity Supports
In DBMS literature, a transaction can either see all updates
from another specific transaction or cannot see any. To guar-
antee this property, we established principles that regulate
the visible diffL2P range of a transaction. The principles are
as follows:

• Before a read-write transaction commits, only the
transaction can see the corresponding diffL2P.

• When a read-write transaction commits, the MV-FTL
stores all the L2P mappings belonging to the diffL2P
to the NAND.

• After a transaction commits, the other transactions
that started later than the commit operation can see
the corresponding diffL2P. (See the next section for
more details.)

• When a transaction is aborted, all the L2P mappings
belonging to the diffL2P are simply discarded, mark-
ing all the written pages as invalid.
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Algorithm 1: WritePage(did, logicalAddr, data)
Input: logicalAddr : logical Address of data to write
did : ID of diffL2P referred by the current transaction
data : data to write
Output: void

1 physicalAddr← getFreePage();
2 nandWrite(physicalAddr, PAGE SIZE, data);
3 foreach L2PEntry e in diffL2P[did].entries do
4 if e.logicalAddr == logicalAddr then
5 invalidate(e.physicalAddr);
6 e.physicalAddr← physicalAddr;
7 return;
8 end
9 end

10 entry← AllocateL2PEntry();
11 entry.logicalAddr← logicalAddr;
12 entry.physicalAddr← physicalAddr;
13 diffL2P[did].entries.append(entry);

By obeying these principles, a transaction can see the up-
dates from other transactions in an atomic manner.

When a transaction commits, the MV-FTL stores all the
L2P mappings on the diffL2P. The MV-FTL first gathers the
L2P mappings into the committed L2P log pages (shortly
commitLog pages, hereafter) shown in Figure 4. MV-FTL
writes the commitLog pages into dedicated meta blocks
called committed L2P log blocks (shortly commitLog blocks,
hereafter) in ascending order, from the first to the last page.
After completely writing all the commitLog pages, MV-
FTL notifies the host that the commit operation for the
transaction has finished.

A commitLog page can contain only a limited number
of L2P mappings,2, whereas diffL2P can have more L2P
mappings than the that. In this case, MV-FTL stores multiple
commitLog pages with overflow markers. That is, supposing
a commitLog page can have up to l mappings while a com-
mitted diffL2P has N L2P mappings, (k−1)∗ l < N ≤ k ∗ l,
MV-FTL should write k commitLog pages atomically. To do
this, from the first to the (k − 1)-th pages, MV-FTL marks
the page as overflowed; MV-FTL sets the nc value at the each
commitLog page header as 0, putting l entries to the page.
Finally, for the k-th page, MV-FTL puts all the remaining
L2P mappings to the page and sets nc as non-zero value.

Using the overflow markers, MV-FTL can filter out par-
tially written diffL2Ps, thereby guaranteeing the atomicity
and durability of transactions, On next boot time, MV-FTL
reads each of the commitLog pages in the commitLog blocks
in reverse order, from the last page back to the first page. If
MV-FTL meets a page with nc = 0, it simply discards the
page and go on to the previous page until it first meets a
page with non-zero nc value. After finding such a page,
MV-FTL reads all the commitLog pages — from the oldest
to the page with non-zero nc value — and reflects the L2P
mappings in these pages to the main L2P table.

Obviously, MV-FTL has only a limited number of com-
mitLog blocks. In addition, the fact that MV-FTL writes

2. Up to 1023 L2P mappings when a NAND page is 8-Kbytes long
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Fig. 4: (a) Structure of a committed L2P log page and (b) its
format

at least one commitLog page on each commit operation3

aggravates the shortage of commitLog blocks, making the
remaining empty spaces in the page written in vain. When
there’s insufficient MV-FTL first reads the commitLog pages
with empty spaces from the NAND flash memory, compacts
them into a smaller number of pages, and write back to
commitLog blocks. In this way, MV-FTL gets more empty
pages. Still, if this procedure cannot obtain a sufficient
number of empty pages, MV-FTL stores the whole L2P
table into NAND, making the old commitLog pages which
have already been applied to the main L2P table to become
obsolete. However, these saving the whole L2P table may
worsen the expected lifetime of MV-FTL — it generats more
NAND page write operations. Therefore, for future research,
we need more elaborated mechanisms to not store the whole
L2P table at a time.

In our SQLite evaluations, for reference, we allocated
a only 4 blocks for the commitLog blocks but it seemed
to be sufficient. Also, we believe the increased storing the
L2P tables were almost negligible compare to the MV-FTL’s
reducing the number of data pages written to NAND by
almost up to 1/2.

3.4 Snapshot Isolation based on MV-FTL
MV-FTL provides snapshot isolation [11] using CDL. When
a read-only transaction starts, the transaction first ask to
MV-FTL about the ID of the most recently committed
diffL2P. Accordingly, MV-FTL returns the ID of the tail
diffL2P of the CDL, incrementing the reference count (ref-
count) of the diffL2P by 1. From then on, as in the update
case, whenever the transaction reads from the MV-FTL, it
tags the access with the ID.

On receiving a read access, the MV-FTL first finds the
diffL2P that corresponds to the ID and checks the diffL2P to
find whether it contains an L2P mapping that matches the
read access. If it matches, then the MV-FTL reads from the
NAND using L2P mapping; if not, the MV-FTL goes to the
previous diffL2P on the CDL and repeats the checking. If

3. To guarantee the atomic commit, MV-FTL should write a page even
when there are only a few L2P mappings to store.
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Algorithm 2: ReadPage(did, logicalAddr)
Input:
logicalAddr : logical Address of data to read
did : ID of diffL2P referred by the current transaction
Output:
data : data stored in logicalAddr

1 iterDiffL2P← diffL2P[did];
2 while iterDiffL2P ! = NULL do
3 foreach L2PEntry e in iterDiffL2P.entries do
4 if e.logicalAddr == logicalAddr then
5 return nandRead(e.physicalAddr,

PAGE SIZE);
6 end
7 end
8 iterDiffL2P← iterDiffL2P.prev;
9 end

10 foreach L2PEntry e In L2PTable.entries do
11 if e.logicalAddr == logicalAddr then
12 return nandRead(e.physicalAddr, PAGE SIZE);
13 end
14 end

no matching L2P mapping is found in any of the preceding
diffL2Ps on the CDL, the MV-FTL reads the NAND page
using the main L2P table. Algorithm 2 shows the detailed
procedure of the read operation in MV-FTL.

After a while, if the transaction completes its job, it
notifies the MV-FTL that it will no longer use the assigned
diffL2P ID. Then, MV-FTL decrements the refcount of the
designated diffL2P, to check if the diffL2P needs to be
purged or not. (See Section 3.5.)

A read-write transaction also reads from the MV-FTL,
and therefore, it requires snapshot isolation. As discussed
earlier in this section, MV-FTL gives the ID of a new diffL2P
to write on to the read-write transaction, instead of the
most recently committed diffL2P’s ID. To smoothly provide
snapshot isolation for the read-write transaction, MV-FTL
puts a pointer to the tail of the CDL into the newly-created
diffL2P, incrementing the tail’s refcount by 1 — this pointer
will be removed when the corresponding transaction com-
mits, decrementing the refcount of the pointed diffL2P by 1.
By following the pointer, a read-write transaction can also
make full use of snapshot isolation, using the same read
algorithm.

Based on the snapshot isolation, MV-FTL becomes free
from read anomalies [11]. However, at the same time, MV-
FTL still needs help from DBMSs, for MV-FTL cannot pre-
vent concurrency anomalies such as write skew [23]. In
Section 4.1.2, we show how we modified SQLite to provide
such aids.

3.5 Version Purging
MV-FTL monitors the reference count (refcount) of every
committed diffL2P. Specifically, MV-FTL checks the refcount
of diffL2P whenever the status of the related transaction
changes, i.e., at every transaction end, commit, or abort time.
If the refcount of a committed diffL2P becomes 0, the MV-
FTL triggers the diffL2P purge operation, which is as shown
in Algorithm 3.

Algorithm 3: PurgeDiffL2P(did)
Input: did : diffL2P referenced by the current

transaction
Output: None

1 victim← diffL2P[did];
2 if victim is tail of CDL then
3 return;
4 else
5 if victim is head of CDL then

/* apply all L2Ps in victim to the
L2P table */

6 foreach L2PEntry e in victim do
7 tEntry← L2PTable.entries[e.logicalAddr];
8 InvalidatePage(tEntry.physicalAddr);
9 tEntry.physicalAddr← e.physicalAddr;

10 end
11 else

/* victim is neither head nor tail
of CDL */

12 next← victim.next;
13 foreach L2PEntry e in victim do

/* check if next already has a
L2P mapping for e.logicalAddr

*/
14 en⇐ next.getEntry(e.logicalAddr);
15 if en != NULL then
16 invalidatePage(e.physicalAddr);
17 else

/* add e only when next does
not have it */

18 next.insertEntry(e);
19 end
20 RemoveFromCDL(victim);
21 FreeDiffL2P(victim);

When a diffL2P’s refcount becomes 0, the MV-FTL does
not have to keep the version. MV-FTL deals with the diffL2P
according to the relative position on CDL, which can be
categorized as follows:

• The diffL2P is at the tail of CDL (lines 2-3) In this
case, the diffL2P is the most recently committed one,
and MV-FTL simply does nothing and returns.

• The diffL2P is at the head of CDL (lines 4-10, 20-
21) In this case, the diffL2P is the oldest committed
one, and all the other transactions will get a newer
version. In other words, no other transaction will be
affected even when the diffL2P and the main L2P
table are merged. Hence, MV-FTL applies the L2P
mappings on the diffL2P to the main L2P table (lines
6-10), and then frees the diffL2P (lines 20-21).

• The diffL2P is neither head nor tail of CDL (lines
11-21) In this case, there exists some transactions that
access older versions. Hence, MV-FTL cannot apply
the L2P mapping to the main L2P table; otherwise,
it will affect the older versions. Instead, MV-FTL
merges the diffL2P with the one next to it along the
CDL (lines 13-19). While merging these two diffL2Ps,
there may be L2P mappings with the same logical
address. Then, MV-FTL will invalidate the older one
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(lines 15-16), as the older one will no longer be
needed. After merging, MV-FTL frees the diffL2P
(lines 20-21).

We designed MV-FTL to not remove the tail diffL2P.
This design decision is to assure that there is at least one
diffL2P in CDL; by never removing the tail diffL2P, the
condition will be sufficiently guaranteed. Of course, MV-
FTL definitely purges the tail diffL2P, as time goes by; that is,
when a transaction commits, the corresponding diffL2P will
soon take the tail position. Therefore, the previously-been-
at-the-tail diffL2P can now be removed as an intermediate
node — neither tail nor head.

The main advantage of MV-FTL’s purging operation is
that it is almost free, especially when compared to the
garbage-collection operations in MVCC DBMSs. That is,
while a DBMS need to read and write back the data pages
to physically erase expired versions for a garbage-collection,
MV-FTL have only to invalidates the L2P mappings of the
expired versions. As an L2P mapping is far smaller than a
data page itself — practically thousands of times smaller, the
cost will be almost negligible. Moreover, MV-FTL rarely has
to write the L2P mappings even as long as it has sufficiently
large DRAMs enough to accomodate all its data structures
— it was true even in the OpenSSD platform [24], which has
relatively limited HW resources compared to commodity
SSDs. (We will discuss further in the next section.)

The fact that purging operations are almost free in
MV-FTL additionally enhances both MV-FTL itself and the
storage system based on MV-FTL. Firstly, MV-FTL can
aggresively invoke a purge operation whenever it finds a
diffL2P with zero refcount, thereby minimizing the number
of diffL2Ps and keeping the memory requirement of MV-
FTL as small as possible. Furthermore, from the storage
system’s point of view, it no longer has to suffer from
garbage-collection pause or such.

4 CASE STUDIES 1: SQLITE

4.1 Implementation
Being intensely focused on its motto, ”Small. Fast. Reliable.”4,
SQLite implements just a fundamental level of storage man-
agement. Although this makes SQLite beloved especially
in the mobile area, many researchers have reported that
the storage management in SQLite causes degradation in
the performance of its transaction processing [16], [25]. In
addition, SQLite is a good testbed to show the effectiveness
of MV-FTL because it has a straightforward architecture.

To evaluate MV-FTL, we first modified SQLite [12]. More
specifically, we simply turned off WAL mode, the original
MVCC mode of SQLite and, instead, added an additional
small amount of codes to communicate with MV-FTL, In ad-
dition, we implemented an MV-FTL on OpenSSD (described
in Section 4.1.1) and modified SQLite to cooperate with
MV-FTL (Section 4.1.2). Furthermore, for communication
between OpenSSD and SQLite, we implemented additional
interfaces from OpenSSD to SQLite in the Linux kernel
(Section 4.1.3). The overall architecture of our system is
shown in Figure 5.

4. This motto can be seen on the top-right of the SQLite homepage
[12]
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Fig. 5: Overall architecture of MV-FTL/SQLite system

4.1.1 MV-FTL Implementation on OpenSSD

We implemented MV-FTL by modifying the open source
greedy FTL of OpenSSD.

We first created modules that implement the idea de-
scribed in Section 3 and incorporated them with the greedy
FTL. In particular, we allocated 16 KB of DRAM memory
for storing the diffL2Ps. As the size of each diffL2P entry is
16 bytes, the MV-FTL can store approximately 900 diffL2P
entries in the DRAM. If there are too many transactional L2P
versions, i.e., more than 900 diffL2P entries, the MV-FTL can
accommodate no more diffL2P entries. In such cases, MV-
FTL denies any transactional update and notifies the host
about the update failure. However, in practice, the chance
of such failures is rare, because the transactions are usually
very short. Empirically, although we conducted a variety
of experiments, including TPC-C and the RL Benchmark,
several times, we never experienced such a failure, and the
total number of diffL2P entries never exceeded 600.

To support transactional operations for MV-FTL, we ex-
tended the SATA interfaces as in X-FTL [16]. More precisely,
we extended the SATA read/write commands such that they
can carry the ID of transactions. Furthermore, we extended
the SATA TRIM command such that the host can notify MV-
FTL about the start, commit/abort, and end of a transaction
through the command.

4.1.2 Modifications to SQLite

To fully utilize the version management features provided
by MV-FTL, we modified two SQLite modules, namely
the Pager, which oversees storage management, and the
OS Interface. We extended the procedures related to the
transaction start/end in the Pager such that they transmit
proper information to MV-FTL in accordance with the stage
of each transaction.
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Moreover, because MV-FTL does not require a locking
for any read-only transaction, we just turned off the read
locks in SQLite. The fact that readers are free from locking
elavates the degree of concurrency for read transactions
higher — theoretically even higher than SQLite WAL mode.
In fact, SQLite WAL mode still requires every read transac-
tion to acquire a read lock in advance, which is to simplify
the version management.

Remark Although MV-FTL does not need any lock for
read-only transactions, read-write transactions still need to
acquire an exclusive lock for DB in advance. However, this
does not hurt the concurrency, as any mode in the SQLite
does the same.

4.1.3 Modifications on other layers
In addition to SQLite and MV-FTL, the middle layers, such
as the file system, block layer, and device driver, also partic-
ipate in transactional communication, which means that all
the layers require an extension to enable the communication.

In this paper, again as in X-FTL [16], we extend the
interface of each layer such that each layer simply passes
the transactional requests to the lower layer until they reach
the MV-FTL.

Meanwhile, the Linux kernel uses the page cache to
accelerate read/write accesses to the storage device. The
page cache replaces page I/O operations with the quicker
main-memory I/O operations. At this point, in order to
incorporate the page cache with our MV-FTL, the former
should also be aware of the concept of versions. That is, if
SQLite requests the page of a specific version, the page cache
first checks whether the page is in the cache, and then checks
whether the page is of the requested version. However,
because this modification was beyond our capabilities, we
omitted the page cache modification for the present study,
leaving this for a future work; instead, we modified SQLite
to use direct I/O so that we can skip the page cache. Even
though we limited MV-FTL to use direct I/O only, we
hope that soon we could present the evaluation result using
buffered I/O.

4.2 Evaluation

Based on the implemented system, we evaluated the effec-
tiveness of storage-level multi-version concurrency control
by comparing the performance of MV-FTL and modified
SQLite with those of SQLite’s two original journal modes
[12], RBJ and WAL. We also compared them with X-FTL [16],
one of the previous studies that enhanced the overall per-
formance by exploiting the unique update scheme of flash
storages. For evaluation, we first executed SQL transactions
captured from the RL Benchmark [17], and while executing
the workload, we added several concurrent read accesses
such that those read accesses could inhibit the execution of
the RL Benchmark. For a more realistic evaluation, we ex-
ecuted the DBT2 [26] benchmark, a TPC-C-like benchmark
for SQLite. In this experiment, we first added concurrent
read access, as in the RL Benchmark experiment.

In addition, we compared how many pages the host
writes to the MV-FTL while executing these workloads in
each mode. The results suggest that using MV-FTL reduces
the number of pages that needs to be written for executing

CPU Intel i5-3470

RAM 8 GB

OS Kernel Linux kernel 3.16.1 (modified)

File System ext4 (modified)

Database SQLite v3.7.13 (modified)

Storage
(OS, main programs)

Samsung 850 SSD 128GB

Storage
(being tested)

Indilinx Jasmine Barefoot OpenSSD
with 4 Samsung MLC 64Gb NAND flash
memories (32GB in total)
Page size: 8KB, Block Size: 1MB

TABLE 1: Evaluation Setup

Txn# Transaction

1-1000 Insert 1 item
1001-1002 Insert 25000 items

1003 1000 range updates
1004 Update 2500 items
1005 Insert into t1 from t2; Insert into t2 from t1;
1006 Deletion with ”LIKE” statement
1007 Deletion using Range

1008-1010 Drop t1, t2 and t3, respectively.

TABLE 2: RL Benchmark transaction sequences

Name Weight I/O type Freq(%)

Delivery Batch Read-write 4%
Order-status Mid-weight Read-only 4%

Payment Light-weight Read-write 43%
Stock-level Heavy-weight Read-only 4%
New-Order Mid-weight Read-write 45%

TABLE 3: Types of transactions for DBT2

transactions, which can prolong the overall lifetime of a
flash storage and improve the overall system performance.

4.2.1 Evaluation setup
We implemented MV-FTL on top of the Jasmine OpenSSD
Platform [24]. The platform consists of a Barefoot controller
that contains an 87.5 MHz ARM7 processor, 96 KB of SRAM
for firmware codes, 64 MB mobile SDRAM for metadata,
and 4 NAND flash memories of 8 GB each from Samsung.
This platform supports SATA 2.0 on the host interface.

At the host side, we modified SQLite to co-operate with
the MV-FTL, file system, and Linux kernel in order to
facilitate the communication between SQLite and MV-FTL.

For a competitor, we implemented X-FTL on the same
OpenSSD and modified SQLite, the Linux kernel, and so
on, based on the description of the paper [16]. We also
compared the evaluation results with the original RBJ and
WAL modes. For those modes, we used the unmodified
version of OpenSSD, SQLite, and the Linux kernel.

All the evaluations were conducted on the same ma-
chine. The machine’s detailed information is summarized
in Table 1.

4.2.2 Concurrency Evaluation
To evaluate MV-FTL and other modes, we used two popular
benchmark, each of which is described below:
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Mode FTL-Assisted? Multi-version?

RBJ No No
WAL No Yes
X-FTL Yes No

MV-FTL Yes Yes

TABLE 4: Features of each mode to evaluate

• We first captured SQL queries using RL Benchmark
[17], which is one of the most popular benchmark
applications tatevaluates the performance of SQLite
on Android phones. RL Benchmark consists of tens
of thousands of insert/update SQL queries that con-
sist of transactions of various lengths – some consist
of just a single statement while others contain thou-
sands of statements. (See Table 2 for details)
We extracted the SQL queries while running the RL
Benchmark application on an Android smartphone
and executed them on our system.

• We used DBT2 [26], a TPC-C [18]-like benchmark
that emulates online transaction processing (OLTP)
workloads. A DBT2 worker selects and executes one
of the five transactions based on the predefined
probabilities as listed in Table 3. We measured the
number of completed new-order transactions per
minute (NOTPM) as a key factor of performance.

Table 4 summarizes the key features of each mode
to be evaluated. This suggests that SQLite using the RBJ
and WAL modes are expected to suffer from overhead for
guaranteeing transaction atomicity in DBMS-level,5 whereas
SQLite on X-FTL and MV-FTL are free from such overheads
because they are effectively exploiting the OoP characteristic
for the atomicity. On the contrary, in terms of concurrency,
the performance is expected to degrade for RBJ and X-FTL,
because there was only a single version for each dataset,
whereas WAL and MV-FTL can process multiple transac-
tions more fluently using multiple versions. We proved that
these expectations are practically valid in the evaluations.

RL Benchmark with Concurrent Read Accesses

Although RL Benchmark is widely used to evaluate the per-
formance of SQLite, RL Benchmark itself does not evaluate
transaction concurrency. RL Benchmark is single-threaded,
and thus there is no concurrent access. However, in this
paper, to evaluate concurrency, we supposed an artificial but
probable scenario in which a read-only process repeatedly
checks the status of the database while another process is
executing RL Benchmark on the same database. 6 The read-
only process executes a read-only status-checking query N
times every second. For example, if N is zero, the read-only
process never executes the query; if N is ten, the process
executes ten queries per second, — in other words, it exe-
cutes one status-checking query every 100 ms. By adjusting
N , we can implicitly control the degree of concurrency. As N

5. In fact, RBJ suffer more than WAL because RBJ generates more
blocking operations, i.e., more fsync() operations.

6. We implemented status checking simply to avoid possible noise.
More specifically, a status check operation first reads a table with a
single entry and then sleeps for 50 ms of thinking time.

grows, the status check operation obstructs RL Benchmark
execution more by causing readers-writers conflict.

Figure 6 shows the elapsed times of the RL Benchmark
with the above check processes fully implemented, varying
the number of check operations per second, N , from 0 to 25.
Various cases of N are described as follows:

• When N is 0: X-FTL and MV-FTL execute approxi-
mately 1.3 to 1.4 times faster than the WAL modes,
and three times faster than the RBJ mode. The per-
formance improvements result from exploiting the
append-only update characteristic of FTL for guaran-
teeing atomicity of transaction. In this case, both X-
FTL and MV-FTL reduce the need to write additional
data for assuring transaction atomicity.

• When N is greater than zero: While the execution
times of MV-FTL are almost the same, those of X-
FTL increase rapidly with N . The execution times of
X-FTL become even longer than those of the WAL
mode, when N is greater than 13; eventually, X-FTL
fails to execute RL Benchmark when N is greater
than 20, because the read accesses in the check query
repeatedly blocks the execution of RL Benchmark.

In all the cases, SQLite’s RBJ mode performs the worst
for the following reasons: 1) SQLite in the RBJ mode suffers
from the amplified number of writes, which can be twice
as many page writes in the worst case, caused by copying
the original pages to the RBJ file and then updating the
database file; 2) SQLite in the RBJ mode does not provide
any concurrency, because the database in the RBJ mode has
only a single version for each data.

We observed that X-FTL is slightly better than MV-FTL
when N is between zero and one. The main reasons for these
slight inferiorities are: 1) the L2P mapping algorithm in MV-
FTL is slightly more complex than that in X-FTL, and 2)
X-FTL is free from version-purging overhead. However, we
argue that such disadvantage could be negligible, because
MV-FTL is better than X-FTL when there are more than three
check operations per second.

DBT2 with Concurrent Read Access
Next, we conducted an experiment using a configuration
similar to that of the previous experiment: while running
DBT2, an independent process concurrently checks the sta-
tus of the database, as described in Section 4.2.2. We again
varied the number of check operations per second, N , from
0 to 25.

Figure 7 shows that 1) MV-FTL recorded 689 NOTPM
on average, which is almost 2.6 times more than that of
WAL1k (avg. 269 NOTPM) and 2.8 times more than that
of WAL50 (avg. 245 NOTPM); 2) whereas the NOTPM of
X-FTL degrades gradually as N increases. The NOTPM of
MV-FTL sustains regardless of N .

These findings are consistent with the RL Benchmark
evaluation. In fact, the performance gain of MV-FTL is much
greater than that of WAL modes, in the DBT2 evaluation.
We surmise that this is due to the basic differences between
the two benchmarks. Whereas RL Benchmark starts with
an empty database, DBT2 starts with a relatively large
database, which initially takes more than 85 MBs just to
store a single warehouse. Moreover, whereas update queries
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(a) Full, including RBJ (b) Partial

Fig. 6: RL Benchmark execution times when concurrent processes are reading from the same database

Fig. 7: DBT2 performance with concurrent processes check-
ing the same database; measured in NOTPM (higher values
are better).

Fig. 8: DBT2 performances with multiple concurrent work-
ers; measured in NOTPM (higher values are better).

in RL Benchmark are quite elementary, those in DBT2 are
more complex, causing the garbage collection overhead to
become aggravated.

DBT2 with Multiple Concurrent Workers
Next, we evaluated the four modes using DBT2 by varying
the number of concurrent workers from 1 to 20.

In this configuration, each worker independently selects
and executes DBT2 queries on the same database. Therefore,

unlike the previous experiments where we can control the
frequency of simultaneous read accesses, here we have no
way to increase only the concurrent read accesses only,
such that the increased degree of concurrency degrades the
performances of the multi-versioned modes (i.e., the WAL
mode of SQLite and MV-FTL). However, the degradations
are much less in the multi-versioned modes, because they
are free from conflicts between read and write operations,
whereas RBJ and X-FTL still suffer from these conflicts.

Figure 8 shows the results of our evaluation, which
indicates that the performance of each mode, except for
RBJ, converges to some degree as the number of workers
increases. However, as expected, the performance drop is
much slower in MV-FTL than in X-FTL. More precisely, the
performance of X-FTL dropped by less than 50% even with
two clients; however, in the case of MV-FTL, the perfor-
mance drops are more gradual. Our results suggest that,
although the performance drops are inevitable as the degree
of concurrency increased, MV-FTL handles the conflicts
caused by the concurrency more gracefully. Therefore, MV-
FTL can be useful not only when there are many concurrent
read accesses, but also when there are many concurrent
read/write accesses.

4.2.3 Write count analysis
During the evaluations, we measured the number of pages
written per transaction when there is no concurrent read
access — that is, N = 0. We obtained these values using the
blktrace command; i.e., while executing each workload,
we first captured the block layer IO trace to the flash storage.
Then, from the trace, we simply counted the number of
pages written. We also counted the number of read-write
transactions that were successfully committed. Using these
two kinds of values, we calculated the average number of
write operations per transaction.

Figure 9 shows the number of write operations in each
mode. As shown, the number of write operations in MV-FTL
and X-FTL is reduced by 41% and 52% in RL Benchmark and
DBT2, respectively, when compared with WAL1k, the WAL
mode that invokes a checkpoint operation per 1,000-page
update (the default option of the SQLite WAL mode). The
number of write operations in WAL mode is nearly twice as
many as those in MV-FTL and X-FTL. The results verify



1041-4347 (c) 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2017.2757016, IEEE
Transactions on Knowledge and Data Engineering

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 11

Workload MV-FTL X-FTL WAL1k WAL50 RBJ

RL Bench. 12.92 12.91 21.72 22.10 42.32
DBT2 17.08 16.48 35.47 40.93 65.03

(a) the number of write operations
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Fig. 9: Number of writes per transaction (and normalized)
at each mode. WAL50 and WAL1k represent the results of
the WAL mode whose checkpoint threshold is 50- and 1,000-
page updates, respectively.
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Fig. 10: Comparison between the original compaction and
patching compaction. Blocks with diagonal stripes represent
dirty blocks.

our hypothesis, i.e., the WAL mode almost doubles the
number of write operations due to the garbage collections.
In fact, the WAL mode increases the number to more than
twice as that in the DBT2 experiment, because garbage
collections accompany additional updates of meta-data on
the file system.

This reduction of write operations in MV-FTL explains
how and why MV-FTL outperforms RBJ and WAL, i.e., the
number of write operations are significantly reduced, and
therefore, the overall transaction processing performance in-
creases. In addition, in terms of lifetime, MV-FTL is expected
to prolong the lifespan of a flash storage, given that the
lifespan of a flash storage highly correlates with the number
of pages written to it [27].

5 CASE STUDY 2: ROCKSDB
Another system that can benefit from MV-FTL is RocksDB
[13]. RocksDB is an open-source key-value store developed
and widely-adopted by Facebook. It is becoming more and
more famous, since many DBMSs like MyRocks, a Face-
book’s variant of MySQL, began to use RocksDB as their

backend storage engine. According to Dong et al. [13], ”the
underlying storage engine for Facebook’s MySQL instances
is increasingly being switched over from InnoDB to My-
Rocks.” For this reason, RocksDB is drawing considerable
attention from many researchers.

RocksDB is based on Log-Structure Merge (LSM) tree
[28]. It stores data in a file called Sorted Sequence Table
(SST) file. As the name suggests, each SST file is read-only
after it is created. When RocksDB needs to update a data
item, it first adds the item to an in-memory table. When
the in-memory table grows bigger than a certain threshold,
RocksDB flushes it into a new SST file. In the meantime,
older SST files are untouched regardless of data update
or creation of a new SST file. After a while, when a large
number of SST files have been created, RocksDB triggers a
procedure called compaction.

For compaction, RocksDB first chooses the SST files
to be compacted, usually one from lower levels and the
others from higher levels7 Then, RocksDB simply reads and
merge-sorts the SST files, writing the merge-sort output into
new SST files at higher levels. Finally, after the creation
of the new SST file is over, RocksDB deletes the obsoleted
original SST files. Figure 10a depicts the overall compaction
sequence.

One of the difficulties in RocksDB compaction is that
a huge majority of the bytes written during compaction is
merely to copy the data, which exists at the same output
level [13]. RocksDB reads and writes large files at levels
higher than 2, only applying a small amount of changes
from a lower-level file. This comes from an intrinsic design
property of the LSM tree, that is, the total size of SST files
at level n + 1 is designed to be r times bigger than that at
level n, where r is usually 10 in RocksDB. This property
effectively limits the space amplification of the LSM tree
to no more than r/(r − 1), but, at the same time, results
in severe write amplifications for compacting SST files. In
other words, RocksDB reads and re-writes r records at the
level (n+ 1) on average to compactize a single record from
level n.

To cope with this write amplification, we propose a
new compaction algorithm called patch compaction. In patch
compaction, instead of copying the data at the same level,
RocksDB simply writes new or updated parts to the original
SST file. (See Figure 10a) In this way, the use of patch com-
paction in RocksDBs can significantly reduce the number of
bytes to be written. For example, in the case of Figure 10,
RocksDB should originally copy all the 5 data items into a
new file. However, using patch compaction, RocksDB needs
to write only a’ and g to the new SST file.8

This patch compaction itself, however, can harm the con-
currency of the whole system. That is, RocksDB cannot not
access an SST file when the file is under patch compacted.
Moreover, RocksDB suffer from recovery if some failure

7. Here, lower level means the level with lower level number – that
is, L2 is lower than L3.

8. Figure 10b may seem strange as SST file 2 after compaction seems
to be not sorted anymore. However, there is no problem, as the SST
files in RocksDB have already been equipped with index; that is, SST
files do not have to be literally sorted but patch compaction should be
performed to modify the index properly.
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Bytes written(GB)

Workload Original MV-FTL Reduced(%)

TPC-C 12.88 10.65 17.30
LinkBench 7.10 4.23 40.42

TABLE 5: Comparison on Number of written bytes between
the original RocksDB compaction without MV-FTL(original)
and the patch compaction with MV-FTL (MV-FTL)

occurs during patch compaction, as it directly updates the
original file.

Using MV-FTL, however, these concerns get simply ban-
ished. By using MV-FTL, RocksDB can freely read the older
versions of the SST file even when the SST file is under
patch compaction. Likewise, MV-FTL addresses much of the
recovery concerns caused by the patch compaction.

For evaluation, we implemented a file-based emulator
that imitates the version management of MV-FTL; that is,
when a transaction updates an SST file, the emulator first
makes a copy of the existing SST file and then updates the
copy, keeping the existing file intact. In addition, we im-
plemented the patch compaction on RocksDB to cooperate
with the MV-FTL emulator. Then, we executed LinkBench
and TPC-C on MyRocks [22] and measured how many
bytes were written to the storage 9 with and without patch
compaction. For fair comparison, we executed the same
number of queries in both the cases — specifically, 250K
New-Order transactions on TPC-C and 10M requests on
LinkBench.

Table 5 shows the number of bytes written while running
TPC-C and LinkBench. Clearly, patch compaction based on
MV-FTL reduced the number by 40% in LinkBench and 17%
in TPC-C. Although these results do not explicitly guarantee
performance improvements, these may imply the possibility
of improvements using MV-FTL. At the least, MV-FTL will
prolong the lifespan of an SSD by writing fewer bytes to
SSDs, given that only a limited number of bytes can be
written in an SSD during its lifetime.

6 RELATED WORKS

6.1 Studies Utilizing Commodity SSDs

Since their first appearance, SSDs have received much at-
tention from researchers. Researchers have mainly focused
on SSDs’ superior performance in handling random access,
and they have tried to adapt SSD to conventional systems,
which were mostly designed for traditional storage such as
HDDs.

Zhang et al. [5] compared several types of system design
for multi-tenancy workload on SSD-based I/O subsystems
and noticed that the effectiveness of SSD on random data
access affects the performance of the multi-tenancy system.
Lee et al. [29] evaluated SSD performance and presented the
benefits of leveraging SSD in enterprise database applica-
tions. They showed that exploiting SSD in operations related
with transaction logs, multi-version control, and temporary
table spaces is best suited for driving maximum application

9. While measuring, we excluded the overheads caused by the emu-
lator itself.

performance. Chen et al. [30] maximized SSD performance
in online analytical processing (OLAP) operations by avoid-
ing unnecessary writes of small units.

Although these studies cleverly exploited the perfor-
mance characteristics of commodity SSDs, they did not
utilize the intrinsic characteristics of SSDs, which contains
a great potential that may further enhance DBMSs.

6.2 Studies Extending SSDs
Some researchers have proposed extending flash-based stor-
age devices and offloading DBMS tasks to the device to
improve the performance of the entire system. Smart or in-
telligent SSDs [3], [31], [32], Willow [33],and multi-streamed
SSD [34] are notable examples of such approaches. They
proved that system-level performance can be enhanced by
giving more information and delegating processing tasks to
SSDs. However, they are not intended to enhance the degree
of concurrency as in our MV-FTL.

Meanwhile, some researchers have proposed some rev-
olutionary flash-based storage solutions that support trans-
actional updates using the OoP characteristic [6], [35], [36].
Their approaches successfully enhanced both the perfor-
mance and the concurrency of DBMSs. Still, since they
are too revolutionary — they require the overall storage
subsystem to be redesigned [6], [35], [36]; they rely on
a special functionality, partial page programming, that is
rarely available on mobile flash-based storage [6], [35]; or
they need dedicated servers and computing power [36], [37].

6.3 MVCC on enterprise-level DBMSs
Today, there are many DBMSs in the enterprise market. Such
DBMSs usually have complicated MVCC schemes, which
manage versions in more fine-grained units, such as tuples
or record units.

PostgreSQL [10] is a great example. When PostgreSQL
updates a tuple, instead of immediately overwriting the
existing tuple, it appends the updated tuple into storage,
keeping the old ones untouched. In addition, PostgreSQL
adds a timestamp and a previous-version pointer to the tu-
ple; the timestamp is used to represent the specific version,
and the pointer is used to retrieve the previous version.

This fine-grained lock has many advantages. In partic-
ular, tuple-level version management enables PostgreSQL
to manage tuple-wise locks. When a transaction wants to
update some tuples, it need only acquire locks for each of
the tuples, and therefore other transactions are blocked only
when they are to access tuples modified by the updating
transaction. In this way, the tuple-grained version manage-
ment significantly improves the DBMS concurrency level.
In addition, the appending operations are well optimized,
harmonizing with the buffer manager.

However, because PostgreSQL has been optimized for
traditional block devices such as HDDs, PostgreSQL does
not exploit the OoP characteristic of SSDs. For example,
PostgreSQL has an independent auto-vacuum daemon that
periodically purges unnecessary old versions. The daemon
reduces the space overhead of managing multiple ver-
sions and gives the database a more compact form. How-
ever, from an SSD point of view, the auto-vacuum seems
somewhat burdensome because SSDs have already been
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equipped with well-optimized garbage collection mecha-
nisms for handling updates in an OoP, append-only manner.

6.4 Studies Extending MVCC
There are also many studies on reducing MVCC overhead.
Firstly, Neumann et al. [38] implemented MVCC on a main-
memory database system called Hyper [39]. They imple-
mented an in-place update scheme with undo log buffers
for version control and adapted a precision locking method
[40] to support serializability for snapshot isolation.

Jones et al. [41] extended H-store [42] to support a low-
overhead concurrency control scheme. To take advantage
of multiple machines and CPUs, H-Store divides data into
partitions so that transactions are distributed to partitions
as much as possible. In this manner, most transactions can
work independently without the overhead generated from
concurrency control. With transactions that have data de-
pendencies, they proposed speculative execution to improve
throughput by hiding two-phase commit latency.

Saxena et al. [43] implemented a prototype of a main-
memory transactional store by extending TinySTM [44].
In addition, they proposed a partitioned logging method
for durability, which assigns transactional logs to cores so
that logs are independently flushed to separate locations in
the SSD. Partitioned logging leverages multi-core systems
and the internal parallelism of SSDs by saturating the SSD
with outstanding requests. Because MV-FTL handles trans-
actional control based on the SSD, unlike studies suggesting
transactional support in main memory, MV-FTL focuses on
reducing the storage I/O costs, which are dominant over the
costs of memory access.

7 CONCLUSION AND DISCUSSION

So far, we have introduced an FTL that provides page-level
multi-version management. Because it is based on the intrin-
sic OoP characteristic of SSDs, MV-FTL manages multiple
page versions in a highly efficient way, thereby relieving the
burdens of multi-version management of DBMSs.

On the basis of MV-FTL, we implemented a lightweight
concurrency control system with SQLite. The system
showed better transaction-processing performance, which
is equivalent to X-FTL, one of the best works to our
knowledge, while the performance were not affected by
any conflicting read operations. Additionaly, from a code
complexity point of view, SQLite could become lighter, freed
from complex RBJ and WAL codes.

Furthemore, we designed a new compaction algorithm,
Patch Compaction for RocksDB, which efficiently utilizes
MV-FTL. We conducted LinkBench and TPC-C benchmark
on the MyRocks, using an MV-FTL emulator that provides
the storage-level multi-versioning. From the evaluations, we
observed that the total number of bytes written was signif-
icantly reduced by using MV-FTL. Although these results
are merely based on emulation, they suggest that the write
overhead on compaction could be significantly reduced by
using MV-FTL. Consequently, we confirmed the feasibility
that MV-FTL could also be useful in more sophisticated
DBMSs – at the least, reducing the number of writes directly
lowers the maintenance cost of the SSD-based enterprise
systems.

MV-FTL still has room for further improvement. First,
currently there exist a big gap in the version management
units in MV-FTL and the cutting-edge DBMSs. For MV-FTL
to be adopted in more complex, enterprise-level DBMSs, it
is necessary to manage versions in smaller units. To do so,
additional supports from DBMSs would be necessary.

Moreover, although MV-FTL can control the conflicts
between reads and writes, it cannot resove the conflicts
between write transactions. For this reason, MV-FTL still
needs additional supports from the DBMS for handling
conflicts between writes — practically, we relied on the
SQLite’s original write lock mechanism on our case study.
One possible method for addressing this issue is to intro-
duce optimistic concurrency control [45] to MV-FTL. As a
vision moving forward, the melding tree [37], [46] of Hyder
could be a direction to take for such extension.

Meanwhile, our patch compaction codes for RocksDB are
still premature, and some logical inefficiencies are apparent.
We believe we can soon improve the algorithm to be even
more efficient, such that the benefit from MV-FTL increases.
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