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This paper proposes an indexing technique for fast retrieval of similar image subse-
quences using the multi-dimensional time warping distance. The time warping distance
is a more suitable similarity measure as compared to the L, distance in many applica-
tions where sequences may be of different lengths and/or different sampling rates. Our
indexing scheme employs a disk-based suffix tree as an index structure and uses a lower-
bound distance function to filter out dissimilar subsequence without false dismissals. It
applies the normalization for an easier control of relative weighting of feature dimensions
and the discretization to compress the index tree. Experiments on medical and synthetic
image sequences verified that the proposed method significantly outperforms the naive
method and scales well in a large volume of image sequence databases.
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1. Introduction

An image sequence database is a set of image sequences, each of which is an ordered
list of images. A series of lung images of a patient, a set of picture images taken by
panorama cameras, and consecutive frames of video clips are the typical examples
of image sequences.

Similarity search is an operation that finds sequences or subsequences whose
changing patterns are similar to that of a given query sequence.' 3 Similarity search
is of growing importance in many new applications such as data mining, data ware-
housing and digital image/video libraries.* Especially in the medical domain, a
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search for patients with similar temporal characteristics can augment the process of
patient care by providing physicians with the insight into the treatment of previous
patients with similar medical conditions. For example, an oncologist might search
the database for patients with similar tumor evolution patterns to find the optimal
course of treatment.

Similarity search is classified into whole matching and subsequence matching.!
Assuming that all the data and query sequences have the same length, whole match-
ing searches for the data sequences similar to a query sequence. Subsequence match-
ing searches for the subsequences, contained in data sequences, which are similar
to a query sequence of arbitrary length.

The naive method for similarity search reads each image sequence or subse-
quence sequentially from the database and computes its distance to a query image
sequence. This method is simple but suffers from severe performance degradation
when the database is large. Therefore an effective indexing scheme is essential as a
scalable solution for similarity search.

Finding a similarity measure for sequences is not easy because sequences that
are qualitatively the same may be quantitatively different. Therefore the previous
approaches often fail to retrieve some of the similar data sequences when employing
only the Euclidean distance as a similarity measure. Thus recent work on similar-
ity search tends to support various types of transformations such as scaling,?®
shifting,:% normalization,”® and time warping.9 '3

Time warping” !4
cate itself as many times as needed without extra costs. The time warping distance
is defined as the smallest distance between two sequences transformed by time
warping. While the Euclidean distance can be used only when two sequences com-
pared are of the same length, the time warping distance can be applied to any two
sequences of arbitrary lengths. Therefore the time warping distance fits well with
the image sequence databases where sequences are of different lengths or having
different interval lengths between elements.

is a transformation that allows any sequence element to repli-

For the efficient processing of similarity search, most of the previous
approaches' ™3 map each sequence or subsequence into a multi-dimensional point
and then compute L, distance metric between multi-dimensional points to filter
out dissimilar sequences in the index space. Yi et al.'® claimed that the multi-
dimensional indexes, assuming the triangular inequality, directly or indirectly cause
false dismissal in similarity search when their underlying distance functions do not
satisfy the triangular inequality. False dismissal®? is defined as a miss in a part
1.13 proved that the time warping distance does
not satisfy the triangular inequality. Therefore the multi-dimensional indexes that

of the final query result. Yi et a

assume the triangular inequality could not work with the time warping distance in
many applications that do not permit false dismissal.

In our earlier work,'! we suggested an efficient subsequence matching approach
with the time warping distance as a similarity measure, assuming that each sequence
element has a single numeric value. Our approach employed a suffix tree,'® (which
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does not presume the triangular inequality) as an index structure, and applied the
discretization of element values in order to reduce the index size. While traversing
the suffix tree, our method computed the lower-bound distance to retrieve all the
similar subsequences without any false dismissal.

This paper extends our earlier work'! to handle the similarity-based subse-
quence search in the image sequences, where multiple numeric values (i.e. feature
vector) represent a single element. The suffix tree is employed again as an index
structure and the idea of the discretization is applied once more for index compres-
sion. The challenges of this extension are: (1) how to define the multi-dimensional
time warping distance metric with the consideration of relative weighting, (2) how
to discretize a multi-dimensional element into a single symbol, and (3) how to define
a lower-bound multi-dimensional time warping distance metric which can be em-
ployed by an index traversal algorithm to filter out dissimilar subsequences without
false dismissal.

Section 2 describes the notations used in this paper and presents the multi-
dimensional time warping distance metric. Sections 3 and 4 present the indexing
and the query processing algorithms of the proposed indexing scheme. The proposed
method is applied to the medical database system in Sec. 5 and then evaluated in
terms of performance and scalability in Sec. 6. Section 7 describes the related work
and Sec. 8 concludes the paper.

2. Definition

This section first describes the notations used in this paper and then gives the
definitions of various distance functions. Finally it presents the formal definition of
the target problem we are going to solve.

2.1. Notation

We use the notation X = (X[1],...,X[n]) for a single dimensional sequence with
n elements. X[i] denotes the ith element of X and |X| denotes the number of
elements in X. |X| also represents the length of X. X|[i : j] is a subsequence of
X containing elements in positions ¢ through j. X[i : —] is a subsequence of X
starting at the ith element position and ending at the last element position. That
is, X[i: =] = X[i : | X|]. X[i : —] also represents the suffix of X starting at the ith
position. () denotes an empty sequence.

Sequences of numeric elements can be converted into sequences of discrete sym-
bols by the discretization. X© denotes a sequence of discrete symbols converted
from X. Then, X©[i] is the ith symbol of X and |X©| is the number of elements
in X©. The meanings of X“[i : j] and X©[i : —] are analogous to those of X[i : j]
and X[i: —].

We use the bold font for multi-dimensional sequences. That is, X
(X[1],...,X[n]) represents a multi-dimensional sequence with n elements. X[i] =
(X[i][1], ..., X[i][k]) denotes the ith element of X with k feature values. We assume
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that every element of multi-dimensional sequences has the same number of fea-
ture values. Notice that an image sequence is an instance of a multi-dimensional
sequence.

2.2. Daistance function
2.2.1. L, distance

The L, distance function has been widely used to measure the similarity of any two
sequences X and Y. L is the Manhattan distance, Lo is the Euclidean distance, and
L. is the maximum distance in any pair of elements.'® The L, function requires
the two sequences to be compared and also similar in length.

x| e
Ly = [SIXE-viP| . 1<p<oo.
i=1

2.2.2. Time warping distance

In general, finding a similarity measure for sequences is not easy because sequences
that are qualitatively the same may be quantitatively different. First, the sequences
may be of different lengths, making it difficult or impossible to embed them in a
metric space and then using the Euclidean distance to measure their similarity.
Second, the sampling rates of the sequences may be different, making similarity
measures such as cross-correlation useless. In the area of speech recognition,'* this
problem has been approached using a similarity measure, called the time warping
distance.%14

Time warping is a generalization of classical algorithms for comparing discrete
sequences with continuous values.' To find the minimum difference between two
sequences, time warping enables each element of a sequence to match one or more
neighboring elements of another sequence.

Definition 1. Given any two sequences X and Y, the time warping distance Dy,
is defined recursively as follows'4:

D ((), () =0,
D (X, () = Diw((),Y) = 00,
De(X,Y[2: —))
Di(X,Y) = |X[1] = Y[1]| + min { Dy(X[2: -], V)
De(X[2: ], Y[2: —]).

D (X,Y) can be efficiently calculated using a dynamic programming
technique® based on the recurrence relation. The dynamic programming algorithm?
fills in the table T' of cumulative distances as the computation proceeds. The final
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Table 1. Cumulative distance table for X = (4,
5,6,7,6,6) and Y = (3,4, 3).

row6 6 16 11 12
rowd 6 13 9 10
row4 7 10 7 8
row3 6 6 4 5
row?2 5 3 2 3
rowl 4 1 1 2

X/Y 3 4 3

columnl  column2 column3

cumulative distance, T[|X]][|Y]], is the minimum distance between X and Y, and
the matching of elements can be traced backward in the table by choosing the
previous cells with the lowest cumulative distance. This distance computation has
the complexity O(|X||Y|). Table 1 shows the cumulative distance table for two
sequences X = (4,5,6,7,6,6) and Y = (3,4,3). Here Dy (X,Y) = 12 because
TIX]Y]) = T[6][3] = 12.

2.2.3. Multi-dimensional time warping distance

Before proposing the multi-dimensional time warping distance function, let us con-
sider the weighted distance function Dy ase for any two multi-dimensional elements
X [i] and Y[j] with k features:

k
Dunvase(X[1], Y[j]) = Y Wi |X[i][h] = Y[j][A]] .
h=1

Here W}, is the weight of the hth feature dimension. With Dypase as a distance
metric for any two elements, the multi-dimensional time warping distance for any
two multi-dimensional sequences X and Y is defined as follows:

Definition 2. For any two multi-dimensional sequences, X and Y, the multi-
dimensional time warping distance between X and Y is defined as follows:

Dmew((), () =0,
Diew (X, () = Dimew((), Y) = 00,
Dinew (X, Y[2: =)
Dintw (X, Y) = Dinpase(X[1], Y1]) + min { Dy (X[2: =], Y)
D (X[2: =], Y[2: —]).

Diitw(X,Y) can be calculated with the computation complexity O(k|X||Y|)
using a dynamic programming technique” based on the recurrence relation.
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2.3. Problem definition

The primary goal of this paper is to propose an efficient indexing technique for
similarity-based subsequence search in image sequence databases. The formal defi-
nition of the problem is as follows:

Given a set of image data sequences of arbitrary lengths, an image query se-
quence q, and a distance tolerance ¢, find those data subsequences x which satisfy
Diw(x,q) <e.

Additional types of queries include the nearest neighbor queries (e.g. “find the
five image sequences most similar to a given image sequence”) and the “all pairs”
queries (e.g. “report all pairs of image sequences that are within the distance €
from each other”). Both types of queries can be handled by our approach using a
branch-and-bound algorithm'” together with a spatial join algorithm.'®

3. Indexing

The indexing step builds an index from a set of image sequences. As shown in
Fig. 1, this step is further divided into the pre-processing and the index construc-
tion. The pre-processing step transforms a set of raw image sequences into a set of
discrete symbol sequences through the successive processes of segmentation, feature
extraction, normalization, and discretization. The index construction step builds a
disk-based suffix tree incrementally from a set of discrete symbol sequences by
performing a series of binary merges of suffix trees.

sequences of raw images
|

v / pre-processing
segmentation

lsequences of raw images with identified objects

feature extraction

isequences of multi-dimensional elements

normalization

lsequences of normalized multi-dimensional elements

discretization

\
J sequences of discrete symbols

index construction

I

suffix tree

Fig. 1. The steps for building an index from a set of raw image sequences.
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3.1. Segmentation and feature extraction

The segmentation is to detect the boundaries of objects from the background
and the feature extraction is to compute a representative feature vector from
the identified objects. As an example, let us consider a sequence of brain images
containing a tumor. We may extract the following three features from each tu-
mor object: (location, size, perimeter). Then, the image sequence X is denoted
as ((location|1], size[1], perimeter[1]), ..., (location[n], size[n], perimeter[n])) where
n is the number of images in X.

Since the detailed description on segmentation and feature extraction is beyond
the scope of this paper, we omit the further discussion on them. Interested readers
may refer to the Refs. 19-22.

3.2. Normalization

The purpose of the normalization process is to make it easier for users to assign
or control the relative weighting of the feature dimensions. Without normaliza-
tion, the feature dimensions with higher average values may have more influence
in determining the similarity of any two sequences. Thus the normalization en-
ables every feature dimension to have the same data value distribution (i.e. normal
distribution).

3.3. Discretization

The discretization process converts a feature vector into the corresponding sym-
bol in order to make the index structure compact and thus accelerate the query
processing. For discretization, we will first generate a set of categories from a
set of normalized multi-dimensional elements. Using the categorization method of
multiple-attribute type abstraction hierarchy (MTAH),23 we classify similar multi-
dimensional elements into the same category and then assign a unique symbol
to each category. MTAH is a data-driven multiple-level categorization hierarchy
that uses relazation error as a goodness measure of categories. MTAH has the
following benefits: (1) The algorithm considers both value and frequency distribu-
tions; therefore it is more accurate than the equal-length interval categorization,
and (2) MTAH is easier to implement as compared to the maximum-entropy cat-
egorization method. A category from the k-dimensional elements is represented as
C = ([C[1] - min, C[1] - max], [C[2] - min, C[2] - max], ..., [C[k] - min, C[k] - max]).
After obtaining a set of categories, we convert each element into the symbol of the
corresponding category. We use the notation X € to denote the sequence discretized
from X.

3.4. Index construction

Once we have converted the sequences of raw images into sequences of symbols, we
propose to use the suffix tree as an index structure for fast subsequence matching.
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The suffix tree has the benefits such that (1) it is a good structure especially for sub-
sequence matching since all possible suffixes of the given sequence are maintained
in the tree, and (2) it does not assume any geometry or any distance function. Thus
it guarantees the absence of false dismissals even with the time warping distance if
the distance metric used in the index space is a lower-bound function of the time
warping distance.

Let us present the definition and the internal structure of the suffix tree. A trie
is an indexing structure used for indexing a set of keywords. A suffiz trie'® is a
trie whose set of keywords comprises the suffixes of sequences. Nodes with a single
outgoing edge can be collapsed, yielding the structure known as the suffiz tree.!®
Each suffix of a sequence is represented by a leaf node. More specifically, X[i : —]
is expressed by a leaf node labeled with (ID(X), ), where ID(X) is the identifier
of X and i is the offset from which the suffix starts. The edges are labeled with
subsequences such that the concatenation of the edge labels on the path from the
root to the leaf (ID(X),¢) becomes X[i : —]. The concatenation of the edge labels
on the path from the root to the internal node, N, represents the longest common
prefix of the suffixes represented by the leaf nodes under N. We use the notation
label(N1, N2) for the concatenated labels on the path from N; to No.

To build the suffix tree from multiple sequences, we use an incremental disk-
based suffix tree construction method.?* Two suffix trees, representing two disjoint
sets of sequences, are merged to produce a single suffix tree by performing the pre-
order traversal on both trees and combining the paths corresponding to common

(XS1) (YS1) (XS2) (XC4) (YS,3)

(X,6) (X&5) c
C

(X3) (Y52)

Fig. 2. Suffix tree constructed from X© = (A, B,C, D,C,C) and Y© = (A, C, D, E). Six suffixes
({(A,B,C,D,C,C),(B,C,D,C,C),(C,D,C,C), (D, C,C),(C,C),(C)) from X and four suffixes
({(A,C,D,E),(C, D, E),(D,E), (E)) from Y are extracted and then inserted into the suffix tree.
$ denotes an end marker of a suffix.
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subsequences. The construction of the suffix tree from m data sequences, whose
average length is L, has algorithmic complexity of O(mL).

Figure 2 shows the suffix tree constructed from two symbol sequences, X C =
(A,B,C,D,C,C) and YC = (A, C, D, E) where $ denotes an end marker of a suffix.

4. Query Processing

When a query image sequence is submitted, it is first converted into the corre-
sponding multi-dimensional sequence q using segmentation and feature extraction.
Then the suffix tree is traversed from the root to retrieve a set of candidate subse-
quences whose lower-bound distances to the query sequence are within the distance
tolerance €.

Since the lower-bound time warping distance is used for filtering, the dissim-
ilar subsequences whose actual time warping distances are larger than £ may be
included in the candidate set. These subsequences are called false alarms.™? There-
fore the proposed algorithm applies the post-processing on the set of candidate sub-
sequences. That is, it retrieves the corresponding subsequences from the database
and computes their time warping distances using D, . Finally, the subsequences
whose actual time warping distances that are not larger than ¢ are returned as the
final answers.

4.1. Index traversal algorithm

The proposed index traversal algorithm is shown in Algorithm 1. Starting from the
root, the algorithm visits each node in the depth-first order. When the algorithm

Algorithm 1. Index Traversal Algorithm

Input :node N, query sequence ¢, distance tolerance ¢, cumulative dis-
tance table T'
Output: candidateSet

candidateSet — {};
CN «— GetChildren(N);

for i — 1 to |CN| do

CT; « AddRow(T, g, label(N, CN;), Dytw—1v);

Let dist be the rightmost column value of the newly added row;

Let minDist be the minimum column value of the newly added row;
if dist < ¢ then

| candidateSet «— candidateSet U {label(root, CN;)};

if minDist < ¢ then
| candidateSet « candidateSet U IndexTraversal (CN;, g, ¢, CT;);

return candidateSet;
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visits a node NN, it inspects each child node C'N; to find a new candidate and
to determine whether the visiting of the subtree of C'N; is needed. For simpler
explanation, we assume that every edge connecting the node N and its child node
CN; is labeled with a single symbol.

To find a new candidate, the algorithm computes the lower-bound time warping
distance Dptw—1b between label(root, CN;) and q. Here, label(root,C'N;) denotes
a series of labels on the path from the root to C'N;. The definition of D ,w_1p is
given in the following subsection.

For this distance computation, the algorithm uses the dynamic programming
technique and thus builds a cumulative distance table with ¢ on the X-axis and
label(root, C'N;) on the Y-axis. If N is the root (i.e. CN; is the direct child of the
root), then the distance table is built from the bottom. Otherwise, the distance
table is constructed by augmenting a new row on the existing table T which has
been accumulated from the root to V. The algorithm calls the function AddRow
(T, q, label(N,CN;), Ditw—1b) to build a new cumulative distance table, using the
distance function Dtw—1b, by augmenting a new row for label(N,CN;) on T. If
the rightmost column of the newly added row has the value less than or equal to
the distance tolerance €, then label(root, C'N;) is added into a candidate set.

To determine whether visiting the subtree of C'N; is needed, the algorithm reads
each column of the newly added row. If at least one column has a value less than
or equal to ¢, then the algorithm continues down the tree to find more candidates.
Otherwise, the algorithm moves to the next child of N. This branch-pruning method
is based on the following theorem.

Theorem 1. If all columns of the top row of the cumulative distance table have
values greater than a distance tolerance €, adding more rows on this table does not
yield the new values less than or equal to €.

Proof. The proof is given in Ref. 25. O

4.2. Lower-bound time warping distance function

Since every edge of the suffix tree is labeled with symbols, the exact multi-
dimensional time warping distance between a query sequence and a subsequence
contained in the suffix tree cannot be obtained. Therefore we introduce the new
distance function D tw_11 that returns a lower-bound distance of Dty -

Definition 3. Given two subsequences & and y of multi-dimensional elements,
the distance function Dmtw,lb(wc,y) that returns a lower-bound distance of
Diw(x,y) is defined as follows:

Dintw-16((), () = 0

Dintw—16(2%, () = Dinew—1n({),y) = o0
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Dmtw(wca y[2 : _])
Dmtwflb(mca y) - Dmbaseflb(mc[]-]a y[]-]) + min Dmtw(wc[2 : _]7 y)
Dmtw(wc[2 : _]7y[2 : _])

k

Dmbase—lb(07 y[l]) = Z Wh * Dbase—lb(c[h]7 y[l] [h])
h=1

Dhase—1(C[h], y[1][R])
0 if C[h] - min < y[1][A] < C[h] - max
= < C[h] - min —y[1][h]  if y[1][h] < C[h] - min
y[1][h] — C[h] -max if y[1][h] > C[h] - max

Here € is the symbol sequence obtained from . In this definition, C' is the first
symbol (i.e. X°[1]) of X and C[h] denotes the range (i.e. minimum and maximum
values) within which the multi-dimensional elements represented by the symbol C
take the values for their hth feature dimension.

It is apparent that Dypase—1b always produces the distance not larger than the
distance returned by Dypase for any two multi-dimensional elements. Therefore it is
also obvious that Dy w—1p always produces the distance not larger than the distance
returned by Dyt for any two sequences of multi-dimensional elements.

The proposed query processing algorithm uses Dypase—1p as a filtering func-
tion during the index traversal. When the multi-dimensional time warping distance
Ditw between a multi-dimensional data subsequence and a query sequence is not
larger than e, their lower-bound time warping distance Ditw—1p is certainly smaller
than or equal to e. This implies that all the data subsequences within ¢ from a
query sequence are surely included in the candidate set. On the other hand, the
algorithm safely filters out the data subsequences when their lower-bound distances
to a query sequence are beyond &.

4.3. Algorithm analysis

Before analyzing the complexity of the proposed query processing algorithm, let us
examine the complexity of the naive method. The naive method reads each image
sequence and builds as many cumulative distance tables as the number of suffixes
contained in the sequence. Let k& be the number of features extracted from each
image sequence. Then the complexity of building a cumulative distance table for
the query image sequence g and the suffix of length L is O(kL|q|). For m data
sequences whose average length is L, there are mL suffixes and their average length
is £, Therefore the complexity of the naive method is expressed as O(kmL?|q|).

The proposed algorithm is computationally less expensive than the naive

method because (1) the proposed branch-pruning method reduces the search
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space and (2) the suffixes with common prefixes share cumulative distance ta-
bles during index traversal. Thus the proposed algorithm has the complexity
O((kmL?|q|/RaR,) + knLq), where Rq(> 1) is the reduction factor saved by the
sharing of the cumulative distance tables, R,(> 1) is the reduction factor gained
from the branch-pruning, and n is the number of subsequences requiring the post-
processing. Hence, the left expression represents the cost for index traversal and
the right expression the cost for post-processing.

Ry grows as the lengths and the number of common edges of the suffix
tree increase. Given h suffixes, si,...,Ss, whose first ¢ elements are the same,
the construction of A cumulative distance tables requires the computation of
Isillgl + -+ + |sn||g| cells of cumulative distance tables. However it is reduced
to tlg] + (|si] — t)|lg] + -+ + (|sn] — t)|q| if the cumulative distance table for g
and the common prefix of length ¢ is shared by h suffixes. In this case, R4 can be
expressed as the following:

s+ -+ Isnl
Rg = .
(Istl+ -+ 1lsnl) = (= 1)t
While Ry is determined by the distribution of element values contained in se-

quences, R, is decided by the number of answers required by a user. That is, R,
increases as the distance tolerance ¢ and thus the number of answers decrease. If

(a) query image sequence

E KMeD2 Resukt Viewer {)

lungTumor_|ungTumor xc... |Ln'|glumur yC...[ungTumor. aras g Tumor.xc... | ungTumor yc.. lungTumoe.ares
| lungTumor: 1.23219351 .. 09207951371 038510691 . 131184071 .. |0.0907200792._ 1 021171976, 0329920317

2 ungTumor® 1. 31184%71 ... DEOP229792. 1 021171976, -1 337654 2. |DBETEOFO8E. [0 895510652, . |0.3308T1505...
lungTumor* A 28181542... 0473393524 [1 246001071.... -1 23468722, |-0.09519367... |1 AT4065609. . |0 937851524,
lungTumor® 0868 003 .. 0421367537 018363603, <1 23161542, 073303524 11 248901071 ... | 0.958948319._
== |urgTumor®  -1.06592060... D.B5IS09176...[-0.55395026.. J0E37TE2M L [1.029975329 . |0.101023355... | 0.619255555... H

(b) result viewer

Fig. 3. (a) Lung tumor image sequence submitted as a query, and (b) the viewer of the query
results.
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€ is so small that just one or two subsequences can be answers, only the topmost
part of the index may be visited during the query processing. In another extreme
case where ¢ is large enough for all subsequences to be the answers, all nodes of the
index need to be visited, thus making R, = 1.

5. Application to KMeD System

This section applies the proposed indexing scheme to KMeD,?5 a knowledge-based
multimedia medical distributed database system being developed in the University
California at Los Angeles (UCLA). KMeD has the following features: (1) queries
medical images by both image content and alphanumeric content, (2) models tempo-
ral, spatial, and evolutionary nature of medical objects, and (3) formulates queries
using conceptual and imprecise terms and support cooperative processing.

In the KMeD environment, the proposed technique can be applied to the re-
trieval of medical image subsequences having spatio-temporal characteristics similar
to those of the query sequence. Figure 3(a) shows the lung tumor image sequence
submitted as a query. Lung tumor objects are identified by segmentation and their
representative features such as location, size, circularity, and distance from other
organs are computed using various feature extraction functions. Figure 3(b) is the
viewer of the query results. The actual image subsequences retrieved by KMeD
system are shown in Fig. 4.

L

L B
e
-
w

P T e ]
P A 2

"
4
_-:gnunirmm W

(b) second answer

Fig. 4. The image subsequences returned by the KMeD System. Both subsequences have the
feature values (i.e. location and size) similar to those of the query image sequence shown in
Fig. 3(a).
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6. Evaluation

This section evaluates the proposed indexing scheme, implemented in C++ pro-
gramming language, in terms of performance and scalability with real and synthetic
data sets.

6.1. Data set

The real data set contains 20 patients and each patient has three lung images taken
at different times. To transform this set of image sequences into a large set, we
have divided each lung image into 96 sub-regions, thus making 96 sequences of
length 3 for each patient. As a result, 20 patient image sequences were transformed
into 1920 sequences with three images for each sequence. We then extracted the
following 7 features from each image: (1) percentage of voxels, (2) mean of gray
level, (3) standard deviation of gray level, (4) median of gray level, (5) tenth centile,
(6) first measure of correlation, and (7) horizontal edge.

We have also generated a large set of synthetic image sequences for scalability
testing. The expression for generating the values of each feature dimension was
defined as a random walk. That is, the values of the jth feature dimension are
generated by the expression X[i][j] = X[i — 1][j] + Z;, where Z;(i = 1,2,...) are
independent, identically distributed random variables taken in the range of [1,100].
The number and the average length of synthetic image sequences were determined
according to the purpose of each scalability test.

6.2. System configuration

The hardware platform for the experiments was the LG-IBM Personal Computer
MultiNet X-Pentium IV 2.0 GHz system equipped with 512 KB cache, 512 MB
RAM, and 80 GB Seagate hard disk with 7200 RPM and 9 ms average seek time.
The software platform was the Windows XP professional version.

6.3. Performance test

Using the real data set, we evaluated the performance of the proposed method
and the naive method. The naive method reads each image subsequence sequen-
tially from the database and computes its distance to the query sequence using the
dynamic programming technique.

The first experiment measured the average query processing time of 100 queries
with the increasing number of categories used for the discretization. The distance
threshold was set to retrieve 5 answers. As shown in Fig. 5, the performance of the
naive method maintains consistency because it is independent of the discretization.
However, as a whole, the performance of the proposed method becomes better as the
number of categories increases. This is because the proposed lower-bound distance
function becomes closer to the original distance metric and thus reduces the number
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time (sec)
0.12
0.1¢
0.08¢ [ proposed
method
0.06 E naive
method
0.04 H
0.02H
0 number of
categories

Fig. 5. The average query processing time for a selected number of categories used for the
discretization. This experiment used 1920 image data sequences, each of which has three elements
with seven features. The average length of query sequences was three. The distance threshold was
set to retrieve five answers.

of false alarms. Notice that the performance degrades when the number of categories
exceeds a certain threshold. This is because a large number of categories results in
a large index tree. This threshold value may be used as the optimal number of
categories.

The second experiment compared the two approaches with the increasing num-
ber of answers. The number of categories in our approach was set to 200. As shown
in Fig. 6, the performance of both approaches degrades slightly as the number of
answers increases. However a large number of answers decreases the performance

time (sec)
0.12
0.1
0.08 [ proposed
method
0.06 S naive
method
0.04
0.02
0 number of
answers

Fig. 6. The average query processing time for a selected number of answers requested by a user.
This experiment used 1920 image data sequences, each of which has three elements with seven
features. The average length of query sequences and the number of categories were 3 and 200,
respectively.
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benefit of our approach due to an enlarged search space. However this is not a
concern because users are interested in a small number of the high ranking similar
answers.

6.4. Scalability test

We tested the scalability of the proposed method using the synthetic data set. The
parameters used for this scalability test are (1) k (the number of feature dimen-
sions), (2) m (the number of data image sequences), (3) L (the average number of
images in a data sequence), and (4) |q| (the average number of images in a query
sequence). For every scalability test, the number of categories was 100 and the dis-
tance tolerance was adjusted to retrieve answers 1073% of the total number of data

subsequences.
time (sec)
140
120
100
E proposed
80 method
S naive
60 method

40

20

feature dimension

Fig. 7. The average query processing time for a selected number of feature dimensions. The other
parameters were set at m = 500, L = 200, and |q| = 20.

time (sec)

250

200
[ proposed

150 method
El naive

100H method

50¢
(U number of

100 500 1000 1500 2000
data sequences

Fig. 8. The average query processing time for a selected number of data sequences. The other
parameters were set at k = 5, L = 200, and |q| = 20.
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The first scalability test compared the average query processing time of both
approaches with the number of feature dimensions increasing from 4 to 20. The
other parameters were set at m = 500, L = 200, and |g| = 20. As shown in Fig. 7,
the query processing time for both approaches increases linearly as the number of
feature dimensions increases. Notice that our approach has a much lower rate of
increase with the number of features.

The second scalability test compared the performance of both approaches with
the number of data image sequences increasing from 100 to 2000. The other pa-
rameters were set at k = 5, L = 200, and |g| = 20. As shown in Fig. 8, the
query processing time for both approaches increases linearly with the number of
data sequences but the ratio of performance improvement remains approximately
constant.

time (sec)

900

800

700

600 [ proposed

500 method

400 S naive
method

300

200

100

0 length of

200 400 600 800 data sequences

Fig. 9. The average query processing time for the selected average length of data sequences. The
other parameters were set at k =5, L = 200, and |g| = 20.

time (sec)
120
100
80 [J proposed
method
60 S naive
method
40
20
0 length of

query sequences

Fig. 10. The average query processing time for selected average length of query sequences. The
other parameters were set at k = 5, m = 500, and L = 200.
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The third scalability test compared the performance for the length of data image
sequences increasing from 200 to 800. The other parameters were set at k = 5,
m = 500, and |g| = 20. As shown in Fig. 9, the query processing time for both
approaches increases quadratically with the length of data sequences but the ratio
of performance improvement remains approximately constant.

The final scalability test compared the performance of both approaches for the
length of query image sequences increasing from 10 to 50. The other parameters
were set at k = 5, m = 500, and L = 200. As shown in Fig. 10, the query processing
time for both approaches increase linearly with the length of query sequences but
the ratio of performance improvement remains approximately constant.

The experimental results validate the algorithm analysis presented in Sec. 4.3,
stating that our approach is more scalable than the naive method.

7. Related Work

This section briefly summarizes the previous work on similarity search in single-
and multi-dimensional sequence databases.

7.1. Work on single dimensional sequences

There has been much research on similarity search in the database of single di-
mensional sequences. Agrawal et al.! proposed the F-Indez, a similarity searching
technique for whole sequence matching. Sequences are converted into the frequency
domain by the Discrete Fourier Transform (DFT) and are subsequently mapped
onto multi-dimensional points that are managed by an R*-tree; this technique was
extended to locate similar subsequences.? Since both approaches use the Euclidean
distance as a similarity measure, sequences of different lengths or different sampling
rates cannot be matched.

A handful of sequence matching techniques that allow transformations were
proposed. Goldin et al.® grouped sequences into equivalent classes using the normal
form. Although the normal form is invariant to shape-based transformations such as
scaling and shifting, it does not handle the compressions or the stretches of element
values along the time axis. Rafiei et al.> proposed a class of sequence transformations
that can be used in a query language to express similarity with an R-tree index.
The proposed transformations handle moving average and global time scaling, but
not time warping.

More recent approaches permit the matching of sequences of different lengths.
Bozcaya et al.2” presented a modified version of an edit distance, judging that two
sequences are similar if a majority of their elements match. Yi et al.'® supported the
time warping distance by using a two-step filtering process: a FastMap index filter
followed by a lower-bound distance filter. The underlying index structures of both
approaches'®27 are based on the triangular inequality. The approach suggested by
Keogh et al.?® read a data sequence sequentially from the database, converted it
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into an ordered list of piece-wise linear segments using the best fitting line, and
then applied the modified time warping distance measure.

Park et al.'971229 proposed a series of indexing methods supporting the time
warping distance. A segment-based subsequence searching scheme?® was proposed
for the database of long sequences. This scheme changed the similarity measure
from the time warping distance to the piece-wise time warping distance and limited
the number of data subsequences to be compared with a query sequence. A new
distance function that consistently underestimates the time warping distance and
also satisfies the triangular inequality was proposed in Ref. 10. With L., as a base
distance metric for elements, this distance function was employed for whole match-
ing in Ref. 10 and for subsequence matching in Ref. 12. The indexing technique
proposed in Ref. 11 used a disk-based suffix tree as an index structure and ap-
plied a couple of lower-bound distance functions in index space. To make the index
structure compact and thus accelerate the query processing, it converted sequences
in continuous numeric domain into sequences in discrete symbol domain and then
stored a subset of suffixes whose first values are different from their preceding values.

A couple of shape-based similarity matching schemes were proposed. Agrawal
et al.’® demonstrated a shape definition language (SDL) and provided an index
structure for speeding up the execution of SDL queries. Shatkay et al.?! introduced
the notion of generalized approximate queries that specify the general shapes of data
histories. Whereas both approaches may handle the variations of element values on
the time axis, they are not suitable for applications that utilizes specific element
values.

There are also several approaches for the matching of biological sequences. Bie-
ganski et al.?* proposed to use a disk-based suffix tree for solving the sequence
alignment problem, and Wang et al.>? addressed the problem of discovering pat-
terns in protein databases with the similarity measure of a string edit distance.

7.2. Work on multi-dimensional sequences

1.33 proposed the access method for the matching of multi-dimensional

sequences with a modified version of an edit distance. This method, however, focuses

Yazdani et a

on whole matching and uses an index structure based on the triangular inequality,
therefore leading to possible false dismissal when using the time warping distance
as a similarity measure.

There has also been extensive work on the similarity search on video databases.
A video is a series of frames and is considered as an instance of a multi-dimensional
sequence.

A large number of previous video indexing approaches depend on the naive
method to retrieve similar videos in a database. Mohan®* and Vailaya et al.?®
proposed the video sequence matching methods using action similarity and the
combination of image content and image motion, respectively. Lienhart et al.3%

and Sanchez et al.®” used color coherence vectors and principal components of
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color histograms, respectively, for detecting similar commercial video clips. Ad-
jeroh et al.3® employed the vstring representation for video sequences and intro-
duced vstring edit distance as a similarity indicator. Ardizzone et al.? extracted a
single MPEG motion vector from each 16 x 16 sub-image, and Meng and Chang?°
used low-level motion features such as zoom and pan of camera. Since all the video
indexing approaches mentioned above use the naive method, their performance
deteriorates when the database is large.

Squire et al.*' proposed the use of inverted file techniques for feature-based

1.42 applied the inverted file to media tracking.

image retrieval, and Hampapur et a
Since both approaches keep the inverted files in the main-memory during the query

processing, they are not suitable for a large volume of video databases.

8. Conclusion

An image sequence database is a set of image sequences, each of which is an ordered
list of images. Similarity search is an operation that finds sequences or subsequences
whose changing patterns are similar to that of a given query sequence. Similarity
search is of growing importance in the areas of data mining and digital image/video
libraries. Especially, in the medical domain, a search for patients with similar tempo-
ral characteristics can augment the process of patient care by providing physicians
with insight into the treatment of previous patients with similar medical conditions.

This paper proposed to use a disk-based suffix tree as an indexing method for
fast retrieval of similar image subsequences without false dismissals. Since image
sequences are apt to be of different lengths and/or different sampling rates, the
proposed method employed the multi-dimensional time warping distance as a sim-
ilarity measure. This similarity metric allows two sequences to be stretched along
the time axis in order to minimize their difference.

Experiments on medical and synthetic image sequences verified that the pro-
posed method significantly outperforms the naive method and scales well in a large
volume of image sequence databases. The contributions of our work are (1) propos-
ing a flexible similarity measure suitable for image sequences with different interval
lengths between elements, (2) defining a lower-bound distance metric which always
underestimates the distance between a query image sequence and a discretized data
subsequence and thus assures the absence of false dismissal, (3) presenting an effi-
cient query processing algorithm which integrates the proposed distance functions
and the branch-pruning method in a seamless fashion.

References

1. R. Agrawal, C. Faloutsos and A. Swami, “Efficient similarity search in sequence
databases,” Proc. Int. Conf. Foundations of Data Organization and Algorithms
(FODO) (1993), pp. 69-84.

2. R. Agrawal, K. Lin, H. S. Sawhney and K. Shim, “Fast similarity search in the presence
of noise, scaling, and translation in time-series databases,” Proc. Int. Conf. Very Large
Data Bases (VLDB) (1995), pp. 490-501.



January 10, 2003 16:8 WSPC/164-1JIG 00090

10.

11.

12.

13.

14.

15.
16.

17.

18.

19.

20.

21.

22.

Similarity- Based Subsequence Search in Image Sequence Databases 51

. C. Faloutsos, M. Ranganathan and Y. Manolopoulos, “Fast subsequence matching

in time-series databases,” Proc. ACM Int. Conf. Management of Data (SIGMOD)
(1994), pp. 419-429.

M. S. Chen, J. Han and P. S. Yu, “Data mining: An overview from database perspec-
tive,” IEEE Trans. Knowledge and Data Eng. (TKDE) 8(6), 866-883 (1996).

D. Rafiei and A. Mendelzon, “Similarity-based queries for time series data,” Proc.
ACM Int. Conf. Management of Data (SIGMOD) (1997), pp. 13-24.

K. W. Chu and M. H. Wong, “Fast time-series searching with scaling and shifting,”
Proc. ACM Symp. Principles of Database Syst. (PODS) (1999), pp. 237-248.

G. Das, D. Gunopulos and H. Mannila, “Finding similar time series,” Proc. Principles
Practice Knowledge Discovery in Databases (PKDD) (1997), pp. 88-100.

D. Q. Goldin and P. C. Kanellakis, “On similarity queries for time-series data: Con-
straint specification and implementation,” Proc. Constraint Programming (1995),
pp. 137-153.

D. J. Berndt and J. Clifford, “Finding patterns in time series: A dynamic program-
ming approach,” Advances Knowledge Discovery Data Mining (AAAI/MIT, 1996),
pp. 229-248.

S. W. Kim, S. Park and W. W. Chu, “An index-based approach for similarity search
supporting time warping in large sequence databases,” Proc. IEEE Int. Conf. Data
Eng. (ICDE) (2001) pp. 607-614.

S. Park, W. W. Chu, J. Yoon and C. Hsu, “Efficient searches for similar subsequences
of different lengths in sequence databases,” Proc. IEEE Int. Conf. Data Eng. (ICDE)
(2000) pp. 23-32.

S. Park, S. W. Kim, J. S. Cho and S. Padmanabhan, “Prefix-querying: An ap-
proach for effective subsequence matching under time warping in sequence databases,”
Proc. ACM Int. Conf. Information and Knowledge Management (CIKM) (2001)
pp. 255-262.

B.-K. Yi, H. V. Jagadish and C. Faloutsos, “Efficient retrieval of similar time se-
quences under time warping,” Proc. IEEE Int. Conf. Data Engineering (ICDE)
(1998), pp. 201-208.

L. Rabinar and B.-H. Juang, Fundamentals of Speech Recognition (Prentice Hall,
1993).

G. A. Stephen, String Searching Algorithms (World Scientific Publishing, 1994).

K. Shim, R. Srikant and R. Agrawal, “High-dimensional similarity joins,” Proc. IEEE
Int. Conf. Data Eng. (ICDE) (1997), pp. 301-311.

K. Fukunaga and P. M. Narendra, “A branch and bound algorithms for computing
k-nearest neighbors,” IEEE Trans. Computers C-24(7), 750-753 (1975).

T. Brinkhoff, H.-P. Kriegel, R. Schneider and B. Seeger, “Multi-step processing
of spatial joins,” Proc. ACM Int. Conf. Management of Data (SIGMOD) (1994),
pp. 237-246.

M. S. Brown, J. G. Goldin, M. F. McNitt-Gray, L. E. Greaser, A. Sapra, K. T. Li,
J. W. Sayre, M. Martin and D. R. Aberle, “Knowledge-based segmentation of thoracic
CT images for assessment of split lung function,” Proc. Med. Phys. (2000).

M. S. Brown, M. F. McNitt-Gray, J. G. Goldin, L. E. Greaser, U. M. Hayward, J. W.
Sayre, M. K. Arid and D. R. Aberle, “Automated measurement of single and total
lung volume from CT,” Computer Assisted Tomography 23(4), 632-640 (1999).

M. S. Brown, L. S. Wilson, B. D. Doust, R. W. Gill and C. Sun, “Knowledge-based
method for segmentation and analysis of lung boundaries in chest X-ray images,”
Computerized Med. Imaging Graphics 22(6), 463-477 (1999).

M. Sonka, V. Hlavac and R. Boyle, Image Processing, Analysis, and Machine Vision
(Chapman Hall, 1993).



January 10, 2003 16:8 WSPC/164-1JIG 00090

52

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

S. Park €& W. W. Chu

W. W. Chu and K. Chiang, “Abstraction of high level concepts from numerical val-
ues in databases,” Proc. AAAI Workshop Knowledge Discovery Databases (1994),
pp. 133-144.

P. Bieganski, J. Riedl and J. V. Carlis, “Generalized suffix trees for biological sequence
data: Applications and implementation,” Proc. Hawaii Int. Conf. Syst. Sci. (1994).
S. Park, W. W. Chu, J. Yoon and C. Hsu, “A suffix tree for fast similarity searches of
time-warped subsequences in sequence databases,” Tech. Rep. (UCLA-CS-TR-~990005,
UCLA, 1999).

W. W. Chu, A. F. Cardenas and R. K. Taira, “KMeD: a knowledge-based multimedia
medical distributed database system,” Information Syst. 20(2), 75-96 (1995).

T. Bozkaya, N. Yazdani and M. Ozsoyoglu, “Matching and indexing sequences of dif-
ferent lengths,” Proc. ACM Int. Conf. Information Knowledge Management (CIKM)
(1997), pp. 128-135.

E. J. Keogh and M. J. Pazzani, “Scaling up dynamic time warping to massive
datasets,” Proc. Principles Practice Knowledge Discovery Databases (PKDD) (1999).
S. Park, D. Lee and W. W. Chu, “Fast retrieval of similar subsequences in long
sequence databases,” Proc. IEEE Knowledge and Data Eng. Exchange Workshop
(KDEX) (1999) pp. 60-67.

R. Agrawal, G. Psaila, E. L. Wimmers and M. Zait, “Querying shapes of histories,”
Proc. Int. Conf. Very Large Data Bases (VLDB) (1995), pp. 502-514.

H. Shatkay and S. B. Zdonik, “Approximate queries and representations for large data
sequences,” Proc. IEEE Int. Conf. Data Eng. (ICDE) (1994), pp. 536-545.

J. T. Wang, G. Chirn, T. G. Marr, B. Shapiro, D. Shasha and K. Zhang, “Combi-
natorial pattern discovery for scientific data: Some preliminary results,” Proc. ACM
Int. Conf. Management of Data (SIGMOD) (1994), pp. 115-125.

N. Yazdani and M. Ozsoyoglu, “Sequence matching of images,” Proc. Int. Conf. Sta-
tistical and Scientific Database Management (SSDBM) (1996), pp. 53-62.

R. Mohan, “Video sequence matching,” Proc. Int. Conf. Acoustics Speech and Signal
Processing (ICASSP) (1998).

A. Vailaya, W. Xiong and A. K. Jain, “Query by video clip,” Proc. Int. Conf. Pattern
Recognition (1998).

R. Lienhart, C. Kuhmunch and W. Effelsberg, “On the detection and recognition
of television commercials,” Proc. IEEE Int. Conf. Multimedia Computing and Syst.
(1997).

J. M. Sanchez, X. Binefa, J. Vitria and P. Radeva, “Local color analysis for scene
break detection applied to TV commercials recognition,” Proc. Visual 99 (1999).

D. A. Adjeroh, M. C. Lee and I. King, “A distance measure for video sequence simila-
rity matching,” Proc. Int. Workshop Multi-Media Database Management Syst. (1998).
E. Ardizzone, M. L. Cascia, A. Avanzato and A. Bruna, “Video indexing using MPEG
motion compensation vectors,” Proc. IEEE Int. Conf. Multimedia Computing System
(1999), pp. 490-501.

J. Meng and S.-F. Chang, “CVEPS — A compressed video editing and parsing sys-
tem,” Proc. ACM Multimedia (1996).

D. M. Squire, H. Muller and W. Muller, “Improving response time by search pruning
in content based image retrieval system, using inverted file techniques,” Proc. IEEE
Workshop on Content Based Image and Video Libraries (1990).

A. Hampapur and R. Bolle, “Feature based indexing for media tracking,” Proc. IEEE
Int. Conf. Multimedia Expo (ICME) (2000).



January 10, 2003 16:8 WSPC/164-1JIG 00090

Similarity- Based Subsequence Search in Image Sequence Databases 53

Sanghyun Park is an assistant professor in the Department of
Computer Science and Engineering, Pohang University of Sci-
ence and Technology (POSTECH) in Korea. He received his BS
and MS degrees in Computer Engineering from Seoul National
University, Korea, in 1989 and 1991, respectively. He received
his PhD degree in Computer Science from the University of Cal-
ifornia at Los Angeles (UCLA) in 2001. His research interest
includes database, data mining and multi-media systems.

He has published several research papers in the areas of time series and web
databases. He is currently working on XML indexing, dynamic web data caching
and gene sequence searching.

Wesley W. Chu is a professor of Computer Science and was
the past chairman (1988-1991) of the Computer Science Depart-
ment at the University of California, Los Angeles. He received
his BSE (EE) and MSE (EE) from the University of Michigan
in 1960 and 1961, respectively. He received his PhD (EE) from
Stanford University in 1966.

From 1964 to 1966, he worked on the design of large-scale
computers at IBM in Menlo Park and San Jose, California. From
1966 to 1969, he researched computer communications and distributed databases at
Bell Laboratories, Holmdel, New Jersey. He joined the University of California, Los
Angeles in 1969. He directs a research group at UCLA in the areas of distributed
processing, knowledge-based multimedia medical information systems, and intelli-
gent information systems.

He was the conference chair of the 16th International Conference on Conceptual
Modeling (ER’97). He is also currently a member of the Editorial Board of the
Journal on Applied Intelligence and an Associate Editor for the Journal of Data
and Knowledge Engineering. Dr. Chu is a Fellow of IEEE.




