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Abstract. The accurate prediction of drug responses based on the
genomic profile of a patient is essential to progress in the field of
precision medicine. The advent of various deep-learning algorithms
based on publicly available large-scale omics datasets is the driv-
ing force behind research in this field. The characteristics of biologi-
cal datasets, characterized by high dimensions and low sample sizes,
pose challenges of overfitting and limited generalization in predic-
tion models. Additionally, constructing prediction models using bi-
ological data such as gene expression is further complicated by the
need to account for the complex relationships among genes, which
exacerbates the aforementioned challenges. To address these chal-
lenges, we propose a drug response prediction framework (DrDiff)
that integrates a denoising diffusion probabilistic model (DDPM)
based data augmentation module with a graph attention network
based drug response prediction module. The proposed model showed
a 10% higher AUC than the state-of-the-art models for drug response
prediction for the six drugs considered in the study, suggesting the
superior generalization performance of DrDiff over other baseline
models. Furthermore, we demonstrated the feasibility of generative
models, which form one of the modules of the proposed framework,
in overcoming the fundamental limitations of omics datasets. Fur-
ther experiments bear out the feasibility of generative models, which
form one of the modules of the proposed framework, in augmenting
gene expression data.

1 Introduction

Precision oncology, which aims to provide personalized cancer treat-
ments based on the genetic characteristics of individual tumors,
avoids ineffective treatments, emerging as a promising approach for
improving patient outcomes and reducing healthcare costs [7]. Accu-
rately predicting drug responses, which indicates how specific drug is
effective as a treatment, is greatly becoming important in the current
precision oncology. However, variabilities in drug responses among
patients, which are attributed to genetic variations, make obtaining
accurate predictions challenging [25, 29]. Many studies have been
conducted on deep learning (DL) models that learn the genetic infor-
mation of patients for drug response predictions, with many previous
studies revealing that Gene Expression(GE) data, which represents
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the measurement of the activity of genes, is the most effective type
of data for drug response predictions [9, 19].

In field of bioinformatics such as cancer subtype or drug response
prediction studies using omics data including GE data, high dimen-
sion and low sample size of input data are fundamental challenges.
Many features or variables with relatively few input data samples
increase the risk of overfitting in training datasets and reduce the
generality of prediction models [1, 22]. Additionally, the robustness
of such models are affected by outliers in datasets with small sam-
ple sizes. Therefore, it is essential to carefully balance the number
of features and sample sizes when conducting data analysis, partic-
ularly for omics data, which are often characterized by large dimen-
sions and small sample sizes; we aimed to overcome these obstacles
in this study.

To effectively address the aforementioned problem, approaches
from various perspectives have been proposed: Data Augmentation,
Utilizing Inductive Bias. First possible solution would be augmenting
training data by utilizing generative models, such as variational au-
toencoders (VAEs) [4] and generative adversarial networks (GANs)
[18], which have been actively studied in the field of image process-
ing. Notably, there is a study that proposes improvements in can-
cer classification performance by augmenting GE data using a GAN
and one that proposes a universal tabular generative model that can
be applied to data such as GE data [5]. However, these studies do
not account for generative models neglecting to consider the rela-
tionship between genes when learning, which limits their ability to
capture biological mechanisms. Additionally the advancement in the
field of generative models has led to the emergence of innovative
models such as DDPM, which exceed the capabilities of GAN and
VAE [14, 30]. These models present new possibilities for utilization
in augmentation tasks, which aim to alleviate data sparsity. Lastly,
to overcome the degradation of model predictive power due to lim-
ited training data, a strategy is to use the relationships between genes
as an inductive bias for the predictive model [3, 12]. This approach
can be realized by utilizing graph neural networks that can learn the
relationships between biological pathways obtainable from various
databases [17]. However, in order to increase the predictive power
more efficiently with limited data, there is a need for approaches that
not only efficiently integrate multiple biological pathways but also
better capture biological mechanisms by training models to identify
the importance of relationships between genes in predicting drug re-
sponse.

To overcome the limitations of existing studies, we propose a
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framework capable of addressing the overfitting problem in train-
ing data caused by the high dimensionality and low sample sizes in
omics datasets in the context of drug response prediction. The pro-
posed framework DrDiff comprises three main modules: 1) feature
selection through biological pathway analysis to solve the issue of
high dimensionality, 2) GE data augmentation utilizing diffusion-
based generative models (Diffusion-GE) to address the issue of low
sample sizes, and 3) drug response prediction using graph attention
networks. The first module aims to solve the problem of high dimen-
sionality by extracting the biological pathways most closely related
to the target protein of each drug and selecting the genes that com-
prise these pathways. The second module aims to augment GE data
by leveraging a recent generative model (denoising diffusion proba-
bilistic model), in which a graph autoencoder (AE) is employed to
capture biological mechanisms. The final module employs a graph
attention network, which exploits prior knowledge about biologi-
cal pathways to maximize the generalization of models from limited
training data.

The main contributions of the study are summarized as follows.

• To the best of our knowledge, this is the first study to adapt and
enhance the recently developed denoising diffusion probabilistic
model (DDPM) for developing a GE data augmentation model that
captures biological complexities and addresses the issue of omics
(gene expression) data scarcity.

• We present a novel approach for highly accurate drug response
prediction. Our approach leverages the capabilities of a graph
attention network, which effectively combines information from
a wide range of biological pathways while also considering the
proximity to target proteins.

• The proposed framework, DrDiff, demonstrated superior perfor-
mance in drug response prediction on patient datasets not seen
during training, surpassing other recent methods. Furthermore, we
presented evidence of the generative module, a core component of
our framework, consistently generating higher quality data com-
pared to data produced by other generative models.

2 Related Work

Numerous approaches have been used for drug response predictions.
Traditionally, machine learning techniques have been utilized to se-
lect crucial features for prediction [7, 9, 33]. In recent years, with the
advancement of various DL techniques, research on drug response
predictions has evolved. One such model, multi-omics late integra-
tion (MOLI) [27], utilizes a deep neural network architecture that en-
ables the integration of multiple omics data types at different stages
of a network. Supervised feature extraction learning using triplet loss
(Super.FELT) [23], on the other hand, employs feature selection to
reduce the dimensionality of multi-omics data, followed by a su-
pervised encoder that extracts crucial information from the reduced
omics dataset. Then, it classifies the encoded omics datasets based
on a neural network for drug response prediction. A novel model,
DeepInsight-3D [28], converts structured data into images using con-
volutional neural networks (CNNs) for predicting patient-specific an-
ticancer drug responses.

3 Preliminaries

Definition 1. Denoising Diffusion Probabilistic Model A Denoising
Diffusion Probabilistic Model (DDPMs) [14] is designed to learn a
Markov Chain that systematically transforms a basic probability dis-
tribution, often a random Gaussian distribution, into a distribution

that resembles actual data. This generative process is essentially the
reverse of the forward diffusion process within DDPM. In this for-
ward process, a fixed Markov chain progressively introduces noise
to data while sequentially sampling latent variables x0, x1, ..., xT ,
all having the same dimensionality. Each step in the forward process
is a Gaussian translation.

q (xt | xt−1) := N
(
xt;

√
1− βtxt−1, βtI

)
, (1)

where β1, β2, ..., βT are predetermined variance settings rather than
parameters that the model learns. Eq. (1) calculates xT by introduc-
ing minor Gaussian noise to the latent variable. Given clean data x0

, the sampling of xT is expressed in a closed form by reparameteri-
zation trick as follows:

q (xt | x0) = N (
xt;

√
ātx0, (1− āt) I

)
(2)

xt =
√
ᾱtx0 +

√
1− ᾱtε (3)

where αt := 1 − βt, and ᾱt :=
∏t

s=1 αs. And ε ∼ N(0, I) is
a random gaussian distribution with the same dimensionality as x0.
The training strategy of DDPM commences with the parameteriza-
tion pθ (xt−1 | xt) of Gaussian transitions in the reverse direction of
the forward process, which injects noise. Subsequently, the strategy
culminates in training the reverse process’s mean to predict the mean
of the forward process in order to learn the transition kernel of the
reverse process.

pθ (xt−1 | xt) = N (
xt−1;μθ (xt, t) , σ

2
t I
)

(4)

Lsimple := Et,ε,x0

[∥∥ε− εθ
(√

ātx0 +
√
1− ātε, t

)∥∥2
]

(5)

Eq. (2) provides an efficient method to jump directly to an arbitrary
step in the forward noise process, making it possible to randomly
sample t during training. To predict μθ (xt, t) efficiently, DDPM
adopted a specific parameterization approach based on Eq. (4) and
Eq. (5). Hence, a trainable neural network could predict the noise
added to x0. These authors found that using ε in prediction produced
the best results, especially when it was combined with a reweighted
loss function (eq.(5)).

Definition 2. Gene Expression Graph Construction A set of bi-
ological pathways, denoted as G = {G1,G2, . . . ,Gk}, is defined
on a set of subgraphs G = (V, E). Subgraph G denote an undi-
rected graph comprised of a set of nodes vi ∈ V and a set of edges
eij = (vi , vj) ∈ E . Each node represents a gene, and an edge rep-
resents a relationship between genes.

4 Method

4.1 Framework Design

In this section, we introduce the proposed DrDiff framework for drug
response prediction. Figure 1 illustrates the overall process of the
proposed framework.

4.2 Network Analysis for Feature Selection

To identify the biological pathways that most significantly impact
drug response prediction results, the proximal pathways that are sta-
tistically associated with drug-associated genes need to be identified.
We calculated the proximal pathway by measuring the distance from
the drug-associated genes to each pathway (Figure 1.A) using the
method proposed by Guney et al.[11] The measurement was based on

S. Choi et al. / DrDiff: Drug Response Prediction Through Controllable Diffusion-GE and Graph Attention Network1624



Figure 1. Overview of DrDiff.

the average shortest path lengths between the drug-associated genes
and the nearest pathway genes, according to the following equation:

dcloset =
1

|T |
∑
t∈T

min
s∈S

d(s, t) (6)

where T represents the set of drug-associated genes (target genes), S
represents the pathway genes, and d(s, t) is the shortest path between
the drug-associated and pathway genes.

To identify whether the calculated distance for each pathway was
statistically significant regardless of the number of nodes (genes) that
made up the pathway, random genes were bootstrapped to generate a
reference distribution.

We calculated the z-score of the distances for each pathway us-
ing the mean and standard deviation of the reference distribution.
Subsequently, the pathways with the shortest distances, represent-
ing the lowest 10%, were considered to be most closely related to
the drug. Finally, among all the genes, those that most significantly
impacted drug response predictions, namely those included in the se-
lected pathways, were selected for further analysis.

4.3 Data Augmentation for Generalization

This subsection introduces the second module of the proposed frame-
work, a novel data augmentation method that addresses the lack
of generalization due to insufficient training data (Figure 1.B). The
module comprises two main components. The first component lever-
ages the graph AE to map gene expression data to the latent space.
The second component generates the latent space obtained using the
DDPM. Finally, the augmented latent space is converted back to the
gene expression data level using the trained decoder of the graph AE
(Alg. 1).
4.3.1 Graphical Compression of Gene Expression Profiles The pro-
posed graphical compression model was based on the AE architec-
ture. It took the network information of the biological pathways rep-
resenting the top K pathways proximal to the target protein extracted
through the method described in section 4.2 as an input and encoded
this into a graph representation latent space. The gene expression

data X ∈ R
N×D input to the AE model represented each biological

pathway (extracted in Section 4.2) as one subgraph, as shown in sec-
tion 4.4.1, where the node features of the subgraph comprised gene
expression profiles and gene indicators. Likewise, encoder layer is
defined with the same architecture as the graph attention layer used
in Section 4.4.1, and affine layer was added to produce latent rep-
resentations r ∈ R

N×d (d � D) of the input data after the graph
attention operation. Subsequently, a decoder comprising affine lay-
ers was trained to reconstruct the initial node state, which contained
only the gene expression profiles. Training was done by optimizing
the LGraphAE loss function with respect to φ and ψ as follows:

LGraphAE =
n∑

i=1

(xi − Deφ (Enψ (xi, E)))2 (7)

Subsequently, generation model introduced in the next section is de-
signed to generate the latent space extracted in this section.
4.3.2 Generative Modeling of Latent Space . Regarding the trained
graph AE model, which comprised Enψ and Deφ, it had access to a
low-dimensional latent space containing information about biologi-
cal relationships. Additionally, contrasting with the image generation
task in which the DDPM is commonly used, in this study, this model
required modifications to generate latent spaces containing gene ex-
pression information and the relationships between genes.

In the field of image generation, the backbone architecture of the
DDPM-based model is implemented as U-Net because the CNN op-
erations that form the U-Net architecture align well with the induc-
tive bias of image-like data. However, in our case, adopting a CNN-
based U-Net model as a backbone architecture is inappropriate be-
cause unlike images, the data to be covered do not exhibit locality or
dependencies among neighboring pixels. Therefore, considering the
characteristics of the gene expression data, the backbone architecture
was changed from a convolution layer to an affine layer.

The module discussed in this section enhances the predictive per-
formance of the model in determining the sensitivity or resistance
of a sample to a drug by increasing the amount of training data. To
achieve this, instead of unconditionally generating samples, samples
with labeled indications of their sensitivities or resistances to drugs
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Algorithm 1 Overall data augmentation process
Input:
Gene expression data ← x
Response label for the records in x ← c
Edge information, Weight for the AE ← E , ψ, φ
Weights for the generative(augmentation) model ← θ
Output: Augmented samples

1: repeat

2: Take gradient descent step at
3: ∇ψ ‖x− Deφ (Enψ(x, E))‖2
4: ∇φ ‖x− Deφ (Enψ(x, E))‖2
5: until Coverged
6: repeat

7: (x0, c) ∼ p(x, c)
8: r0 ← Enψ (x0, E)
9: t ∼ Uniform({1, . . . , T})

10: ε ∼ N (0, I)
11: Take gradient descent step at

∇θ

∥∥ε− εθ
(√

ᾱtr0 +
√
1− ᾱtε, t, c

)∥∥2

12: until Coverged
13: rT ∼ N (0, I)
14: for t = T, . . . , 1 do

15: z ∼ N (0, I) if t > 1, else z = 0

16: rt−1 =
1√
αt

(
rt − 1− αt√

1− ᾱt

εθ (rt, t, c)

)
+ σtz

17: end for

18: return r0
19: Augmented samples ← Deφ(r0)

should be generated. In the conditional generation setting, the input
data x0 had an associated condition term (sensitive group and resis-
tant group). Then, the diffusion model needed to be modified to in-
clude condition term c as an input to the reverse process for learning
a conditioned generative model pθ (x0|c).

pθ (xt−1 | xt) = N (
xt−1;μθ (xt, t, c) , σ

2
t I

)
(8)

The reverse process, in which denoising occurs, is transformed
into a conditional probability according to the given condition, and
the injection of noise is the same for data belonging to any class,
indicating that the forward process is not transformed based on the
condition or class of the data. When the mean in the reverse process
changes from μθ (xt, t) to μθ (xt, t, c) , c should be added as an extra
input to the trainable backbone architecture function approximators.
In this case, depending on the modification of the reverse process, the
original simplified loss function (Eq. (5)) can be rewritten as follows:

Lcond := Et,ε,x0

[∥∥ε− εθ
(√

ātx0 +
√
1− ātε, t, c

)∥∥2
]

(9)

To sample latent variables that encompass biological information
under specific conditions, it is necessary to adjust the stochastic gen-
eration step, which has been redefined as ancestral sampling by Ho et
al. [14] and Song et al. [30]. The objective is to modify the inference
process to generate stochastic samples that align with the specified
conditions. This modification can be described as follows:

xt−1 =
1√
αt

(
xt − 1− αt√

1− āt

εθ (xt, t, c)

)
+ σtz (10)

Finally, we performed decoding from the generated latent space to
the gene expression data via a trained graph AE model.

Section 4.3 describes the data augmentation method proposed for
gene expression profiles to improve the generalization performance
of drug response prediction models. This method aims to overcome
the difficulty of generating gene expression data by using a compres-
sion(graph AE) model to map a low-dimension latent space from GE
data that captures biological structure information and then generat-
ing that latent space with DDPM model; this method offers several
advantages. By employing a graph AE to capture biological relation-
ships during generative model training, the difficulty of model train-
ing is relatively reduced. Furthermore, mapping high-dimensional
gene expression data to a low-dimensional latent space decreases
computational complexity.

4.4 Drug Response Prediction with Graph Network

This section presents the final module of the proposed framework,
which is a drug-response prediction method that employs graph at-
tention networks (Figure 1.C). Specifically, each biological pathway
was represented as a subgraph G = (V, E), and the graph attention
network model was applied to each subgraph to learn the patterns
of the gene relationships. Further details of this method are provided
below.
4.4.1 Graph Attention Network. Each subgraph consisted of initial
node features Xi= H

(0)
vi ∈ R

N×F and edges (vi , vj) describe the
interaction between nodes. The node features comprised gene ex-
pression and indicators. Gene indicators were uniquely assigned to
each gene using a trainable embedding matrix, resembling the pro-
cess of token embedding in BERT [6]. Furthermore, nodes belonging
to different biological pathways that corresponded to the same gene
symbol shared the same gene-embedding space. The linkage infor-
mation for each gene was extracted using the adjacency matrix ob-
tained by preprocessing the data parsed from the Kyoto Encyclopedia
of Genes and Genomes (KEGG) [17] database. Then, we adopted a
graph learning method that employs the attention mechanism pro-
posed by Ryu et al. [26] after the establishment of graph representa-
tion; this method is represented as follows:

Hl+1,k
vi = σ

⎛
⎝ ∑

vj∈N(vi)

αl,k
i,jH

l,k
vj W

l,k

⎞
⎠ ,Gk ∈ G (11)

αl,k
i,j = σ

((
Hl,k

vi W
l,k

)
Cl,G

(
Hl,k

vj W
l,k

)T
)

(12)

where N (vi) = {vj : (vi, vj) ∈ E} denotes the set of neighbors
of vi ∈ V . k indicates index of set of subgraphs and H l,k

vi denotes
hidden vector of vi node of l-th layer and k-th subgraph. And the
i-th node state is updated as a function of the previous node state,
W l, k are learnable parameters of the l-th layer, σ(•) is an activation
function, αl, k

i,j denotes an attention coefficient that measures the im-
portance of the j-th node in updating the i-th state, and C represents
the coupling matrix that combines the information of the i-th and j-
th nodes in the graph. Regarding C, it is a learned parameter matrix
that captures the pairwise relationship between nodes and calculates
attention coefficients.
4.4.2 Readout, Concatenation, and Drug Response Predictions. Af-
ter all the nodes in each subgraph were updated, a readout function
was used to aggregate information of one subgraph. And concatenate
operation integrated the distance information of the target protein for
the biological pathway representing that subgraph with the informa-
tion of the nodes in that subgraph (Eq. (13)).

ZG = concat
(
d−1
k ∗ MLPreadout

(
HL,k

)
| k = 0, ...,K

)
(13)
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where dk represents the distance between the target protein and its
subgraph (biological pathway), HL,k represents the final node state
of k-th subgraph (The encoder layer of the graph autoencoder in Sec-
tion 4.3.1 is also constructed as in Eq. (14)). After the information
from all the networks was combined, it was concatenated to form a
representation vector, which was then used to predict the final task of
the drug response, as below.

ypred = MLPpred (ZG) (14)

There are two important differences between the method discussed
in the current subsection and the model proposed by Ryu et al.
First, among the features of the nodes that comprised each sub-
graph, the gene indicator was extracted from a shared trainable gene-
embedding matrix, enabling networks to leverage shared informa-
tion across all the biological pathways while still learning the spe-
cific characteristics of each pathway. In other words, by sharing the
gene-embedding matrix, the networks could exploit the commonali-
ties (identical genes) between different pathways while still learning
their unique differences (geometric information). Second, by incor-
porating this distance information from the target protein into the
readout function, the model could better capture the relationship be-
tween gene expression and drug response, thereby making more ac-
curate predictions. Because genes that are closer to the target protein
may have a greater effect on drug response than genes that are further
away [16].

5 Experiments

This section presents the evaluation of the performance of the pro-
posed framework in terms of its prediction performance for drug re-
sponses, generation performance for gene expression data. To ver-
ify these aspects, we conducted various experiments, which are de-
scribed over various subsections.
Drug Response Prediction Performance (Sec 5.2): This subsec-
tion describes the improvement in the performance of drug response
prediction using the proposed framework over that of the existing
baseline model and analyzes any potential differences in perfor-
mance between the complete framework and the framework without
augmentation module.
Synthetic Data Quality (Sec 5.3): This section compares the data
generated by the proposed model with those generated by other base-
line generation models and discusses the effectiveness of the pro-
posed model in capturing the distribution of real data.
Sensitivity Analysis (Sec 5.4): This section details the number of
biological pathways selected during the process under the first mod-
ule and the number of augmented data points needed in the second
module for obtaining the best performance.

5.1 Dataset

We used the same dataset setup as that used in a previous study [27];
the training set consisted of samples composed of gene expression
values and the corresponding drug response values for cell lines from
the Genomics of Drug Sensitivity in Cancer (GDSC) database [34].
For the drug response labels (resistance/sensitive), we applied the
experimentally determined cutoffs from previous study [16] to sep-
arate sensitive and resistant samples for each drug. The test set con-
sisted of gene expression values and drug response information for
patients from The Cancer Genome Atlas (TCGA) resource [31] and
Patient-Derived Xenograft (PDX) encyclopedia [8]. The data were
downloaded from the Zenodo repository [27]. To obtain information

regarding gene interactions or connections, we utilized the Search
Tool for the Retrieval of Interacting Genes/Proteins(STRING) [34]
database to acquire Protein-Protein interaction (PPI) data, focusing
on high-confidence links and selecting the largest connected com-
ponent of the interactome. To ensure that only relevant interactions
were considered, pathways and drugs with no genes in the PPI net-
work were filtered out, resulting in 1,864 biological pathways.

5.2 Drug Response Prediction Performance

5.2.1 Experiment Setting. To train and validate the model, the GDSC
dataset(train), PDX/TCGA(test) datasets were used for each of the
six drugs. For a fairer comparison, we retained the training, test set
construction, set of drugs, and evaluation metrics that we employed
in our previous studies [25,29,30]. The training sets were divided at
an 80:20 ratio to validate the trained models. We performed a strat-
ified 5-fold cross-validation within the training set to determine the
optimal number of epochs based on early stopping (training of the
neural network was terminated when the validation loss stopped de-
creasing, with the patience value set to 15). and the optimal opti-
mizer. The synthetic data obtained in section 4.3 were not included in
the validation subsets during training, but only in the training subset.
The data augmentation rate for the drug response prediction was set
to 75% of the real sample. This ratio represented the generally ideal
augmentation ratio obtained through the "searching optimal hyper-
parameter" experiment described later in section 5.4. For example, if
the number of samples per label (resistant/sensitive) in the real data
are n and m, respectively, the number of samples per label in the
synthetic sample will be (n+m)

2
and (n+m)

2
, respectively. The evalu-

ation of the synthetic data is detailed in section 5.3. We measured the
AUC values of the test set (PDX/TCGA) using the parameters with
the highest average AUC values in the validation set.
5.2.2 Baselines. We evaluated the performance of several state-
of-the-art methods for anticancer drug response prediction using
multi-omics data. Specifically, three recently developed methods,
MOLI [27], Super.FELT [23], and DeepInsight-3D [28], were used
as benchmarks for comparison. In addition to these methods, non-
negative matrix factorization (NMF) [21], feedforward net, and the
method proposed by Geeleher et al. [9] were included in the compar-
ison analysis. Additionally, a comparison was conducted with other
methods mentioned in a previous study, including the autoencoder
(AE) [7], artificial neural network after feature selection (ANNF)
[23], AutoBoruta Random Forest (AutoBorutaRF) [33], and sup-
port vector machine (SVM) [15]. Finally, we compared the proposed
framework with TabNet [2], a common model used in similar tasks
with tabular data.
5.2.3 Performance Comparison. Table 1 presents an overview of
the generalization performances of different baseline models and the
proposed model for drug response predictions. The results revealed
that the proposed DrDiff model obtained the highest AUC for all the
drugs in the PDX benchmark dataset, except erlotinib, and the best
performance for all the drugs on the TCGA benchmark dataset. Over-
all, the results suggested that the proposed method outperformed all
the comparable baseline models, as evidenced by its higher average
AUC of 0.79 for all six datasets. This finding suggested that the pro-
posed method had a strong potential for improving the accuracy of
drug response predictions, especially on the PDX and TCGA bench-
mark datasets. Starting from the problem definition of this studies
that showed poor generalization performance due to lack of train-
ing data, we investigated the ability of our proposed framework to
predict drug responses without the data augmentation module to ver-
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ify whether it performs worse without it. Additionally, this experi-
ment enables a practical performance comparison with other base-
line models when utilizing the graph attention network using sub-
networks (Section 4.3), another contribution proposed in this study,
without data augmentation. Models trained solely on existing real
data without augmentation exhibited lower performance for all six
drugs compared to models trained with augmented data. This demon-
strates that augmenting training data improves generalization perfor-
mance on the benchmark dataset, which is unseen data, and suggests
that the augmented training data is appropriately crafted to assist in
the downstream task of drug response prediction. Moreover, utiliz-
ing only the graph attention network, the third module proposed in
the DrDiff framework, without augmentation, achieved higher drug
response prediction performance than all baseline models for two
out of three drugs in the TCGA dataset. These experimental results
highlighted that the second module (the data augmentation module)
and third module (the graph attention network module) in the DrDiff
framework were critical to the overall generalization performance.

Model
Dataset

PDX set TCGA set Avg

Pac Cet Erl Doc Cis Gem
NMF [21] 0.24 0.53 0.28 0.39 0.40 0.58 0.40
FFN [27] 0.68 0.43 0.37 0.69 0.44 0.65 0.54
Geeleher et al [9] 0.52 0.58 0.67 0.59 0.62 0.53 0.58
AE [7] 0.44 0.42 0.33 0.50 0.46 0.50 0.44
ANNF [23] 0.64 0.43 0.65 0.64 0.68 0.57 0.60
ABRF [33] 0.46 0.17 0.17 0.42 0.45 0.53 0.36
SVM [15] 0.49 0.41 0.67 0.53 0.47 0.47 0.50
TabNet [2] 0.51 0.51 0.58 0.50 0.50 0.50 0.51
MOLI [27] 0.74 0.53 0.63 0.58 0.66 0.65 0.63
Super.FELT [23] 0.64 0.55 0.76 0.64 0.73 0.61 0.65
DeepInsight [28] 0.74 0.71 0.85 0.78 0.68 0.53 0.71
DrDiff(No-Aug) 0.70 0.67 0.80 0.72 0.75 0.66 0.71
DrDiff 0.78 0.82 0.83 0.83 0.81 0.72 0.78

Table 1. Drug response prediction performance on the PDX and TCGA
dataset. Pac, Cet, Erl, Doc, Cis, Gem respectively represent Paclitaxel,

Cetuximab, Erlotinib, Docetaxel, Cisplatin, and Gemcitabine.

5.3 Synthetic Data Quality

Through a previous experiment (Section 5.2.3), we confirmed that
adding the data generated by the proposed augmentation technique
to the training data resulted in an improved prediction performance
on the benchmark dataset. However, it was unclear whether this per-
formance improvement was solely due to the high-quality data gener-
ated. Therefore, in this section, we discuss the verification of whether
the data generated by the augmentation module properly mimicked
the distribution of real data.
5.3.1 Experiment Setting. To conduct the experiment, we utilized
the generative module with the hyperparameters discussed in sec-
tion 5.2 to generate samples equivalent to that of the real samples in
number. Then, for the quantitative evaluation of the sampling qual-
ity between that of the existing methods and proposed method, we
used four evaluation metrics inspired by previous study [10] (Kull-
back–Leibler divergence (KLD), Pairwise Difference, Log-Cluster ,
and Cosine Similarity). The KLD was computed over a pair of real
and synthetic marginal probability mass functions (PMFs) for a given
variable, and the similarity between two PMFs was measured. The
pairwise difference was measured as the Euclidean distance between

each pair of real and synthetic data. The log-cluster metric was mea-
sured the similarity of the underlying latent structures of the real
and synthetic datasets in terms of clustering. Cosine similarity was
computed the similarity between the two nonzero vectors of an inner
product space, and it measures the cosine of the angle between these
vectors.
5.3.2 Baselines. We compared our augmentation module with four
tabular data generative models, excepting the image data generative
models. The conditional variational autoencoder (CVAE) [20] is a
generative model that learns to generate new data samples by map-
ping a set of conditional variables to the output data distribution. This
extends the traditional VAE by incorporating a set of conditional vari-
ables to control the generation process. We utilized a CVAE with the
KL annealing technique inspired by β-VAE [13]. Conditional tab-
ular GAN (CTGAN) [32] is another generative model that gener-
ates synthetic tabular data by learning the data distribution from real
data and utilizing the generator to produce synthetic data that closely
resemble the original data in terms of statistical properties. Tabular
VAE (TVAE) [32] is a specialized VAE model designed for tabular
data that aims to learn a compact latent representation of the data for
downstream tasks such as data generation and anomaly detection.
Finally, CopulaGAN [24] is a generative model implemented in the
Synthetic Data Vault library that employs copulas to capture complex
multivariate dependencies in tabular data. This approach enables the
generation of synthetic data with a statistical structure resembling
that of the original data.

KLD(↓) PD(↓) Log-Cluster(↓) Cosine Sim(↑)
CVAE [13] 0.0173 8.660 -1.389 0.972
CTGAN [32] 0.0124 6.076 -1.521 0.979
TVAE [32] 0.0068 4.848 -1.406 0.988
CopularGAN [24] 0.0159 7.088 -1.384 0.974
DrDiff 0.0061 4.560 -1.491 0.989

Table 2. Generation performances of different models

5.3.3 Quantitative Evaluation. Using the evaluation metrics men-
tioned in section 5.3.1, we evaluated the quality of the generated
data for real gene expression data for each of the six drugs (Table
2). Subsequently, we derived the final performance of model by cal-
culating the average results of the four evaluation metrics for each
drug. When comparing final performance under the four performance
indicators for each model with the four baseline models and the pro-
posed modules, our proposed model achieved a significantly superior
performance in terms of the KLD, pairwise distance, and cosine sim-
ilarity metrics, except for the log-cluster metrics. This observation
demonstrates that the proposed adeptly approximates the distribu-
tion of real-world data and effectively captures the interrelationships
among features.
5.3.4 Qualitative Evaluation. For the qualitative evaluation of the
sampling diversity between the baseline generative model used in
the quantitative evaluation and our proposed augmentation module,
we conducted a t-SNE visualization comparison analysis between
real and synthetic data (Figure 2). When compared with the t-SNE
distribution of the real data, the data generated by the CTGAN and
CopulaGAN models exhibited a significant difference in distribution
owing to the excessive inclusion of nonexistent values. In contrast,
the CVAE model generated data within the range of the actual data;
however, its diversity was limited. The proposed augmentation mod-
ule outperformed the other baseline models in terms of sampling di-
versity and showed an almost identical distribution to that of real
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data.
5.3.5 Controllable Generation. To demonstrate that our proposed
augmented module could generate a label given as a condition, train-
ing data was augmented for both [matched] and [unmatched] cases,
as shown in Figure 3(a). The augmentation rate was set to 75% of
the real data, which is the training data augmentation rate used in
section 5.2. Figure 3(b) shows the validation loss when training the
drug response prediction model for the two cases with augmented
training data for docetaxel. The decrease in the validation loss for
the [unmatched] cases was smaller than that for the [matched] cases.
This suggested that the prediction model did not learn well for drug
response predictions when trained on the [unmatched] cases. In other
words, our proposed generation model could demonstrate to be ca-
pable of controlling drug response prediction for a given condition
(resistance/sensitivity).

Figure 2. t-SNE visualizations of the synthetic and real data

Figure 3. Augmentation of training data for matched and unmatched cases

5.4 Sensitivity Analysis

In this section, we describe the experiments conducted to determine
when the generalization performance of the drug response prediction
model was optimal by assessing the number of augmented training
data and the number of selected biological pathways.
5.4.1 Experiment Setting. The experimental setup closely resembled
that described in section 5.2.1. The training set was divided in a ra-
tio of 80:20 for model validation, with synthetic data excluded from

the validation set. Notably, the independent benchmark datasets PDX
and TCGA were not considered in this study. Additionally, a strati-
fied 5-fold cross-validation was performed within the training set at
a ratio of 8:2 for training and validation. The average of the recorded
final validation losses for each fold was defined as the performance
metric under the given experimental conditions.
5.4.2 Performance. Figure 4 shows the pattern of the average final
cross-validation loss values depending on the degree of training data
augmentation (Section 4.1) and the degree of biological pathway se-
lection (Section 4.2). The performance improvement concerning the
augmentation and selection degrees was not consistent pattern across
the six drug cases. However, a common finding across all drug cases
is that there is a threshold for performance enhancement owing to
training data augmentation. In other words, infinitely increasing the
data did not lead to unlimited improvements in the performance of
the downstream task (drug response prediction). Similarly, we con-
firmed the presence of a threshold for performance improvement
due to pathway selection. Additionally, we found that selecting more
pathways did not lead to an infinite performance improvement. The
optimal drug response prediction performance is generally achieved
when the data augmentation ratio ranges from 75% to 125% of the
original data, as observed across all drugs. To perform the drug re-
sponse prediction task, the optimal data augmentation ratio was de-
termined to be 75%, as it yielded the lowest average validation loss
for all the drugs across different ratios (25, 50, 75, 100, 125, and
150%). Similarly, the optimal hyperparameter for the pathway selec-
tion ratio was determined by selecting only 5% of the total pathways,
following the previously mentioned method.

Figure 4. Validation loss compared to the augmentation ratio and selection
ratio

6 Conclusion

In this study, we propose a drug response prediction framework that
overcomes the low sample size and high dimensionality of training
data. To solve this problem, we performed feature selection to ex-
tract only important variables through the distance between a drug
and target protein; employed data augmentation to generate gene ex-
pression data by modifying the latest generation model, DDPM; and
utilized a graph attention network for drug response prediction using
biological pathways as the a priori knowledge. The proposed frame-
work showed a higher generalization performance on unseen patient
datasets for drug response prediction than the performances of other
baselines. Furthermore, the generation module that augmented the
gene expression data also produced a higher sample quality than that
produced by the other comparison models.
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