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Abstract—Foundation models allow zero-shot transfer, but
SAM struggles on medical images where fine anatomy matters.
We introduce JAM, a training-free one-shot prototype method
that builds prototypes from a single support image and auto-
generates optimal prompts at inference. We also propose PSC,
a prototype similarity-coverage score that replaces confidence-
based mask selection for more reliable results. JAM is plug-
and-play and outperforms SAM-based and few-shot baselines on
CHAOS-MRI-T2, Synapse-CT, and ETIS in both accuracy and
scalability.

Index Terms—Training-free, Foundation Model, Automatic
Prompt Generation, Medical Image Segmentation, Few-shot Seg-
mentation

I. INTRODUCTION

Recent advances in deep learning have shown that founda-
tion models trained on large datasets can rapidly transfer to
downstream tasks [1]. A representative example is SAM [2],
which achieves strong segmentation with minimal user input
after training on natural images.

However, SAM underperforms in medical imaging [3], [4]
due to (i) fine anatomical details demanding high precision,
(ii) limited and costly expert annotations, and (iii) a confidence
score calibrated for natural images, not clinical data. This
unreliable calibration is problematic, as SAM’s greedy de-
coder [5] selects the highest-confidence mask, thus hindering
fine-grained lesion segmentation (Fig 1(a)). Existing reme-
dies are also flawed: domain-specific finetuning (Fig 1(b)) is
costly and lacks scalability, while few-shot schemes (Fig 1(c))
degrade on unseen domains and depend on variable manual
prompts.

We propose Joint prototype-Aware Mask selection (JAM),
a training-free, one-shot prototype framework (Fig 1(d)). JAM
builds class prototypes from a single support image and stores
them in a memory bank. At test time, it automatically selects
optimal prompts by matching these prototypes to encoder fea-
tures, eliminating extra training and minimizing expert inter-
vention. We also introduce the Prototype Similarity—Coverage
(PSC) score. This metric combines candidate coverage with
prototype similarity, replacing SAM’s unreliable confidence-
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Fig. 1. Comparison of medical image segmentation approaches: (a) Zero-shot:
SAM selects a prompt-based mask. (b) Fine-tuning: adapting SAM via
additional training. (c) Few-shot: segmenting with support-set features. (d)
Ours: training-free, prototype-based optimal mask selection.

based selection to robustly choose the best mask for medical
images.

As summarized in Table I, JAM requires no retraining,
removes manual prompting, reliably selects among multiple
masks via PSC, and generalizes across structures/domains by
simply updating prototypes.

Our main contributions are:

o Training-free one-shot framework: Precise, rapid adap-

tation from a single support image without finetuning.

o PSC score: A coverage—similarity metric that supersedes

confidence-based selection for medical images.

o Automated prompts: Consistent, reproducible inference

without expert-provided prompts.

o Plug-and-play scalability: Generalizes to new domains

by updating prototypes only.

II. METHODS
A. Overview
We propose a training-free, one-shot prototype-based frame-
work to adapt a frozen SAM?2 for medical imaging. As
illustrated in Fig 2, Our method consists of three key steps:
1) ProtoBank Construction: Building a memory bank of
class-specific hybrid prototypes (global and local) from
a support image.



Workflow

Optimal Point Generation a
R(h, PatchMean,(h,w)
Memory ™ b
Attention % S
2
Test | x
Test Image I Output estimage §
Q
Prompt ™ =
Encoder
2]
2) - _ .
n v . . 3« Frozen
. v Mask Selection using PSC score
% ProtoBank Construction ® | AR (1] 9 (3]
i v ' Ambiguous Masks
Ua'::\r/’wse : : 1 )
ff— —& | 2) v H
1 ! )
| ! ! . ] L
! F. Pilobat | Lror ‘| Phybria - '
L ‘ | i v
S N ; J— | . @® _e h—J
[ ——— ! ‘— ! IndexingClassc | | PV Con: 0.03 Con: 0.93 Con: 0.98 Final Mask
Positions : ) {  Positions i PSC:0.93 PSC:0.77 PSC:0.77
""""""""""" . : =
Lg Global Prototype ROI Local Prototype '
Fig. 2. Overview of JAM: ll ProtoBank Construction B Optimal Point Generation  [EJ PSC-based Mask Selection.
TABLE I multi-resolution context:
COMPARISON OF CHARACTERISTICS AMONG ZERO-SHOT SAM, 1
FINE-TUNED SAM, AND OUR METHOD. C — f (2)
pglobal - |];-c|

Criteria SAM  Fine-tuned SAM  Ours

1. No training needed? v X
2. No manual prompts? X
3. Reliable mask selection? X

X

4. Generalizes to new
medical domains?

AN NN

X
4
X

2) Optimal Point Generation: Automatically generating
anchor point prompts for SAM2 based on prototype
similarity with test image features.

3) Mask Selection using PSC Score: Introducing a PSC
Score to select the most reliable mask from SAM?2’s
outputs, mitigating domain discrepancy.

B. ProtoBank Construction

Given a support image I, € RE*WXC and label L, €
0,1,..., K*W we build a ProtoBank of class-specific proto-
types p° € R®. We utilize the frozen SAM2 encoder’s multi-
scale features (dimension C') to compute and combine global
and local prototypes.

1) Global Prototype: From SAM?2’s multi-scale feature
maps F;, we identify pixel positions (y,z) € P¢ for class
c. We map label coordinates to feature coordinates (h;,w;) at

each scale i:
o[y Hi| |z W
e = (|57 557)

The global prototype is the mean of all corresponding feature
vectors f € F¢ collected across all scales, capturing robust,

ey
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2) Local Prototype: To capture fine-grained details, we
crop a region of interest (ROI) for class ¢ (Iror) based on its
bounding box. This crop is passed through the encoder to get
a single high-resolution feature map Fror. The local prototype
is the mean of class c features within this ROI:

1
Z Frot[:, h, w]

plcocal = W
(h,w)eRe

3)

This focuses on local, high-resolution details, unlike the multi-
scale global prototype.

3) Hybrid Prototype: The global (context) and local (detail)
prototypes are combined via a weighted average to form the
final hybrid prototype py,q stored in the ProtoBank:

4)

The weight a. € [0, 1] is determined by the size of the class
region, balancing focus between large-scale context and fine
details.

C _ C C
Phybrid = Qe * Pgiobal + (1 = @) * Plocal

C. Optimal Point Generation

At test time, we match the stored prototype py.iq With
SAM2 encoder features to find an anchor point for class c.
We first compute an anchor mask from a similarity map, then
refine it using multi-scale patches to select a robust point.

1) Anchor Mask via Similarity: We compute the per-pixel
cosine similarity R(h,w) between py,, ;4 and encoder features
f hyaw*

(&
Phybrid fhw

a leclybrid”Q I fhwll2

&)

R(h,w)



Algorithm 1 Multi-scale patch-based anchor selection

Require: Similarity map R, anchor mask M, scales S
Ensure: Anchor point (cg, ¢y)
0: A+ zeros(H,W)
0: for s € S do
0:  simSum < boxFilter(R, s)
0:  maskCnt <+ boxFilter( Mcj,ss, S)
0: for (h,w) with Mg (h,w) =1 do
0 PatchMean, < simSum(h, w)/(maskCnt(h, w)+¢)
0: A(h,w) < A(h,w) + PatchMean,
0: end for
0: end for
0: (CzyCy) < ArGMAX(py, ) My (hyw)=1 A(h, w); return
(Czrcy) =0

The anchor mask M.y, is formed by thresholding the top 20%
of R.

2) Multi-Scale Patch-Based Point: To mitigate noise, we
aggregate similarity over patches. For each pixel within the
anchor mask, we compute the PatchMean, at scale s:

1
| Ps(h, )| 2

PatchMeang (h, w) =
w (h',w")€Ps(h,w)

R(I,w"), (6)

where Ps(h,w) is the s x s neighborhood intersected with the
anchor mask My,s. The final point is selected by maximizing

the sum of patch means across all scales S = {s1,...,8K }
Cy,Cy) = ar max PatchMeang (h, w). 7
( y) g(h:w)eMclass seS ( ) ( )

The selected (c,,c,) is used as a positive point prompt
for SAM2. The boxFilter efficiently computes sums for
PatchMeang, and ¢ ensures numerical stability. The multi-scale
patch-based anchor point selection procedure is summarized
in Algorithm 1.

D. Mask Selection using PSC Score

Given the anchor point, SAM2 proposes multiple masks
{Ay}. We select the best one using a prototype-guided PSC
score, which combines semantic similarity and coverage.

1) Similarity: The similarity simy, is the cosine similarity
between the prototype p,iq and the mask’s average feature

Z fh7w7

haw)EA

fk 'Pﬁybrid
[ fill2 [[Phybriall2

_ 1 .
fr = A7 simy, = (8)
(

2) Coverage: Coverage covy measures the overlap between

the proposed mask Aj and the anchor mask M,ss:

|Ak N Mclassl
| Ak

3) PSC Score: The final score is a weighted sum, where
N () is min-max normalization:

PSCy, = Bsim, + (1 — B) N(covy), € 0,1].
We select the mask Ay with the highest PSCy.

)

COVy =

(10)
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III. EXPERIMENTS

A. Experimental Setting

1) Datasets: We evaluate JAM on CHAOS-MRI-T2 [6] (20
scans/623 slices), Synapse-CT [7] (30/3,779), and ETIS [8].
For CHAOS/Synapse we follow [9]; for ETIS we adopt the
PraNet protocol [10] and compare to in-domain, zero-shot,
and fine-tuned baselines. We report Dice and IoU [11], [12];
organs for CHAOS/Synapse are liver, L/R kidney, spleen, and
ETIS has a single class.

2) Implementation Details: JAM is implemented in Py-
Torch and run on a V100 with SAM2.1 (hiera_large). For
each class, global/local prototypes are fused by a size-
dependent weight c; unless stated, o € {0.3,0.7} with thresh-
olds 1,500/1,200/1,000 pixels for CHAOS/Synapse/ETIS
(set on validation). For new domains, we tune o €
{0.1,0.3,0.5,0.7,0.9} on 5-10 support images (validation
only, no retraining). PSC uses 5=0.6 (CHAOS/Synapse) and
[£=0.7 (ETIS), chosen from {0.0,0.3,0.5,0.6,0.7,1.0}. At in-
ference, anchors are obtained by cosine similarity; similarities
are averaged over 3x3, 5x5, 7x7 windows, and we keep the
top-q% of the smoothed map. Ablations over ¢ € [10, 50] peak
at 20% across benchmarks (and unseen LiTS/KiTS), so we fix
q=20.

B. Comparison with State-of-the-Art Methods

We evaluated JAM’s segmentation performance against
state-of-the-art approaches. We compared few-shot methods on
CHAOS-MRI-T2 and Synapse-CT, and analyzed in-domain,
zero-shot, and fine-tuning strategies on the ETIS dataset.

Table II compares few-shot methods, SAM2, and JAM on
CHAOS-MRI-T2 and Synapse-CT. We used the P2 setting
for JAM (two prompt points). Unlike most few-shot models
requiring supervised training, SAM2 and JAM are training-
free and operate at inference time, offering greater flexibility.

On CHAOS-MRI-T2, JAM improved the average Dice score
by 7.83% over SAM2 with one support image, achieving
comparable or superior performance for LK, RK, and Spleen.
While liver segmentation initially lagged, it improved signifi-
cantly with more support images (e.g., reaching APSCL-level
performance with 10 images). This demonstrates JAM’s ability
to leverage prototype diversity efficiently without retraining.

Similarly, on Synapse-CT, JAM consistently outperformed
SAM?2 by 4.46% in average Dice, maintaining strong seg-
mentation across all organs. This confirms our prototype-
based approach generalizes effectively across MRI and CT
modalities and various anatomical structures.

Table III presents the ETIS dataset results. JAM achieved
Dice 61.2% and IoU 54.3% without training, comparable to
the in-domain model PraNet [10]. JAM also showed over 6%
improvement against SAM-based zero-shot methods (SAM-H,
SAM-L) and outperformed fine-tuned medical-domain meth-
ods like SAM-Adapter, SAMPath, and SurgicalSAM.

Prompting strategies were also key. While methods like
SAM-H and SAM-Adapter require user prompts and others
(SAMPath, SurgicalSAM) use fine-tuned generation, JAM



TABLE 11
PERFORMANCE COMPARISON OF FEW-SHOT SEGMENTATION METHODS ON THE CHAOS-MRI-T2 AND SYNAPSE-CT DATASETS. *P2 INDICATES THE
USE OF TWO POINTS. THE PROPOSED JAM MODEL ACHIEVES SUPERIOR PERFORMANCE COMPARED TO COMPETING METHODS WITHOUT ADDITIONAL

TRAINING.

Model Training Venue ‘ CHAOS-MRI-T2 ‘ Synapse-CT

‘ Liver LK RK  Spleen Mean ‘ Liver LK RK  Spleen Mean
SE-Net [13] ) MIA20 28.68 58.95 6025 50.06 4949 | 47.05 41.83 35.02 4091 41.20
PANet [14] L ICCV19 | 47.39 5429 42,68 5042 4870 | 4027 3322 19.61 31.78 3122
SSL-ALPNet [15] » ECCV20 | 71.01 7194 7798 6338 71.08 | 74.68 62.02 51.38 6577 63.46
PoissonSeg [16] L BIBM21 | 60.06 5398 59.63 56.83 57.63 | 56.08 52.83 49.40 5337 5292
RP-Net [17] L ICCV21 67.04 77.39 8451 7483 7594 | 80.67 7027 7282 69.56 73.33
GCN-DE [18] L) CIBM22 | 53.08 75.05 83.54 6548 69.29 | 47.02 69.38 7348 56.70 61.65
SPRNet [19] ) MICCAI22 | 76.04 73.70 82.45 70.26 75.61 | 7393 66.52 59.71 61.36 65.38
AAS-DCL [20] L ECCV22 | 7278 52.58 8338 6093 6742 | 7240 63.80 68.04 67.01 6781
ADNet [21] » MIA22 80.69 7831 8731 7585 80.54 | 75.80 68.26 64.70 60.74 67.38
LVQM [22] L CVPR23 | 83.08 80.01 87.54 76.79 8196 | 8043 73.14 76.10 70.81 75.12
APSCL [9] L MM24 86.73 84.66 89.66 80.82 8547 | 87.74 80.19 78.00 80.05 81.50
SAM2(P2) [23] * ICLR25 71.62 80.82 83.1 7891 7861 | 7473 81.32 84.54 82.88  80.87
JAM (ours, P2, 1-shot) (. - 7836 8898 91.85 86.56 86.44 | 81.30 85.53 884 86.1 8533
JAM (ours, P2, 10-shot) (. - 86.73 9147 9442 8898 904 | 87.71 89.63 90.65 87.69 88.92
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Fig. 3. Visualization of class-wise segmentation results on CHAOS-MRI-T2 and Synapse-CT datasets.

autonomously generates optimal prompts via prototype sim-
ilarity. Despite being fully automated, JAM achieved higher
Dice and IoU scores, demonstrating the practicality of our
prompt-free approach.

ETIS

Support Image GT Similarity map Ours Support Image GT Similarity map Ours
Fig 3 and 4 offer qualitative comparisons. Fig 3 displays u
support images, GT, similarity maps, and predictions on
CHAOS-MRI-T2 and Synapse-CT, showing how prototype TestImage o SAMTH — SAM-Adapter ours
similarity guides point selection. Fig 4 compares SAM-H,
SAM-Adapter, and JAM on ETIS. Here, JAM (using the
PSC score) consistently produced accurate masks, unlike other  methods that missed or over-segmented lesions.

Fig. 4. ETIS segmentation: SAM-H, SAM-Adapter, and JAM.
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TABLE III TABLE V

PERFORMANCE COMPARISON OF VARIOUS APPROACHES (IN-DOMAIN,
ZERO-SHOT, AND FINE-TUNING) ON ETIS DATASET.

PSC COMPONENT ABLATION ON SYNAPSE-CT.

Model Liver LK RK Spleen Mean
Confidence 62.60 7795 7795 8421 75.60
Similarity 79.33 83.39 84.38 83.28 82.58
Coverage 81.06 84.31 88.60 84.64 84.65

PSC (sim + cov) 81.30 85.53 88.40 86.10 85.33

PSC Select

Confidence Select

Task No Expert Prompt? Methods Venue ETIS
Dice IoU
) U-Net [24] MICCAII5 39.8 335
In-domain PraNet [10] MICCAII9 62.8 56.7
X SAM-H [2] ICCV23  51.7 477
Zero-shot X SAM-L [2] ICCV23  55.1 50.7
X SAM-Adapter [25] ICCV23 59 47.6
Fine-tuning o) SAMPath [26] MICCAI23 555 442
(6] SurgicalSAM [27] AAAI24 342 238
Training-free 0 JAM (ours) 612 543

TABLE IV

PROTOTYPE COMPONENT ABLATION ON CHAOS-MRI-T2.

Model Liver LK RK Spleen Mean
Local Prototype 73.75 65.60 79.93 8691 76.54
Global Prototype 78.57 8594 85.88 90.02 85.24
Hybrid Prototype 78.36 8898 91.85 86.56 86.44

C. Ablation Study

1) Analysis of ProtoBank Effectiveness: Table IV shows
that Local prototypes capture details but underperform over-
all (76.54%). Global prototypes model organ shape better
(85.24%) yet miss fine structures. The Hybrid prototype yields
the best mean (86.44%), balancing global context and local
detail; t-SNE (Fig. 5) also indicates clearer LK/RK separation.

2) Analysis of PSC Score and Its Components: As shown in
V, confidence alone is weakest (75.60 mean Dice). Similarity
and Coverage each help (82.58/84.65), and their combination
(PSC) is best (85.33), especially on difficult kidneys. Qualita-
tively ( Fig. 6), PSC prefers compact, anatomically plausible
masks and is robust in low-contrast or ambiguous boundaries,
unlike confidence-only selection.

3) Performance Variation with Number of Support Images:
As summarized in Table VI, performance scales with the
number of supports: even at one-shot, JAM remains competi-
tive, and with 10 support images the CHAOS liver reaches
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Fig. 6. PSC vs. confidence-based selection on Synapse-CT.

86.7% Dice while means rise across CHAOS-MRI-T2 and
Synapse-CT—evidence that richer, more stable prototypes
emerge without retraining.

IV. LIMITATION AND CONCLUSION

Limitation: JAM adds inference overhead for prototype
extraction and similarity matching: on one V100 (batch=1) it
runs at ~17 FPS vs. 41 FPS for SAM2, processing a 100-slice
CT in ~6s and a 150-slice MRI in ~9s. This is still clinically
practical, but further speed optimizations (e.g., parallelization)
are desirable.

Conclusion: We introduced JAM, a training-free, one-shot
prototype framework that auto-generates prompts and re-
places confidence-based selection with the PSC score. Across
CHAOS-MRI-T2, Synapse-CT, and ETIS, JAM matches or
surpasses few-shot and fine-tuning baselines without expert-



TABLE VI
DICE VS. NUMBER OF SUPPORT IMAGES (CHAOS-MRI-T2,
SYNAPSE-CT, ETIS).

Support images CHAOS-MRI-T2  Synapse-CT  ETIS
Liver Mean Liver Mean Mean

1 78.36 86.44 81.3 8533 612

3 82.5 88.1 83.5 87.2 62.5

5 84.0 89.2 85.0 87.8 63.4

7 85.5 89.8 86.2 88.3 64.1

10 86.7 90.4 87.7 88.9 64.5

crafted prompts, improving deployability. Future work will
pursue faster, lighter implementations and broader multi-
modality validation.

ACKNOWLEDGMENTS

This work was supported in part by the National Research
Foundation of Korea (NRF) grant funded by the Korean
government (MSIT) under Grant Nos. RS-2023-00229822 and
RS-2025-02312833.

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

[11]

[12]

REFERENCES

K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image
recognition,” in Proceedings of the IEEE conference on computer vision
and pattern recognition, 2016, pp. 770-778.

A. Kirillov, E. Mintun, N. Ravi, H. Mao, C. Rolland, L. Gustafson,
T. Xiao, S. Whitehead, A. C. Berg, W.-Y. Lo et al., “Segment anything,”
in Proceedings of the IEEE/CVF international conference on computer
vision, 2023, pp. 4015-4026.

J. Ma, S. Kim, F. Li, M. Baharoon, R. Asakereh, H. Lyu, and B. Wang,
“Segment anything in medical images and videos: Benchmark and
deployment,” arXiv preprint arXiv:2408.03322, 2024.

J. Cheng, J. Ye, Z. Deng, J. Chen, T. Li, H. Wang, Y. Su, Z. Huang,
J. Chen, L. Jiang et al., “Sam-med2d,” arXiv preprint arXiv:2308.16184,
2023.

S. Ding, R. Qian, X. Dong, P. Zhang, Y. Zang, Y. Cao, Y. Guo, D. Lin,
and J. Wang, “Sam2long: Enhancing sam 2 for long video segmentation
with a training-free memory tree,” arXiv preprint arXiv:2410.16268,
2024.

A. E. Kavur, N. S. Gezer, M. Baris, S. Aslan, P.-H. Conze, V. Groza,
D. D. Pham, S. Chatterjee, P. Ernst, S. Ozkan et al., “Chaos challenge-
combined (ct-mr) healthy abdominal organ segmentation,” Medical
image analysis, vol. 69, p. 101950, 2021.

B. Landman, Z. Xu, J. Igelsias, M. Styner, T. Langerak, and A. Klein,
“Miccai multi-atlas labeling beyond the cranial vault-workshop and
challenge,” in Proc. MICCAI multi-atlas labeling beyond cranial
vault—workshop challenge, vol. 5.  Munich, Germany, 2015, p. 12.

J. Silva, A. Histace, O. Romain, X. Dray, and B. Granado, “Toward
embedded detection of polyps in wce images for early diagnosis of
colorectal cancer,” International journal of computer assisted radiology
and surgery, vol. 9, pp. 283-293, 2014.

W. Huang, J. Hu, X. Bi, and B. Xiao, “Anatomical prior guided
spatial contrastive learning for few-shot medical image segmentation,” in
Proceedings of the 32nd ACM International Conference on Multimedia,
2024, pp. 5211-5220.

D.-P. Fan, G.-P. Ji, T. Zhou, G. Chen, H. Fu, J. Shen, and L. Shao,
“Pranet: Parallel reverse attention network for polyp segmentation,” in
International conference on medical image computing and computer-
assisted intervention. Springer, 2020, pp. 263-273.

A. A. Taha and A. Hanbury, “Metrics for evaluating 3d medical image
segmentation: analysis, selection, and tool,” BMC medical imaging,
vol. 15, pp. 1-28, 2015.

J. Long, E. Shelhamer, and T. Darrell, “Fully convolutional networks
for semantic segmentation,” in Proceedings of the IEEE conference on
computer vision and pattern recognition, 2015, pp. 3431-3440.

3744

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

(22]

[23]

[24]

[25]

[26]

[27]

A. G. Roy, S. Siddiqui, S. Polster]l, N. Navab, and C. Wachinger,
“‘squeeze & excite’guided few-shot segmentation of volumetric images,”
Medical image analysis, vol. 59, p. 101587, 2020.

K. Wang, J. H. Liew, Y. Zou, D. Zhou, and J. Feng, “Panet: Few-shot
image semantic segmentation with prototype alignment,” in proceedings
of the IEEE/CVF international conference on computer vision, 2019,
pp. 9197-9206.

C. Ouyang, C. Biffi, C. Chen, T. Kart, H. Qiu, and D. Rueckert, “Self-
supervision with superpixels: Training few-shot medical image seg-
mentation without annotation,” in Computer Vision-ECCV 2020: 16th
European Conference, Glasgow, UK, August 23-28, 2020, Proceedings,
Part XXIX 16. Springer, 2020, pp. 762-780.

X. Shen, G. Zhang, H. Lai, J. Luo, J. Lu, and Y. Luo, “Poisson-
seg: semi-supervised few-shot medical image segmentation via poisson
learning,” in 2021 IEEE international conference on Bioinformatics and
biomedicine (BIBM). 1EEE, 2021, pp. 1513-1518.

H. Tang, X. Liu, S. Sun, X. Yan, and X. Xie, “Recurrent mask
refinement for few-shot medical image segmentation,” in Proceedings
of the IEEE/CVF international conference on computer vision, 2021,
pp. 3918-3928.

L. Sun, C. Li, X. Ding, Y. Huang, Z. Chen, G. Wang, Y. Yu, and
J. Paisley, “Few-shot medical image segmentation using a global cor-
relation network with discriminative embedding,” Computers in biology
and medicine, vol. 140, p. 105067, 2022.

R. Wang, Q. Zhou, and G. Zheng, “Few-shot medical image seg-
mentation regularized with self-reference and contrastive learning,” in
International Conference on Medical Image Computing and Computer-
Assisted Intervention. Springer, 2022, pp. 514-523.

H. Wu, F. Xiao, and C. Liang, “Dual contrastive learning with anatomical
auxiliary supervision for few-shot medical image segmentation,” in
European Conference on Computer Vision. Springer, 2022, pp. 417-
434.

S. Hansen, S. Gautam, R. Jenssen, and M. Kampffmeyer, “Anomaly
detection-inspired few-shot medical image segmentation through self-
supervision with supervoxels,” Medical Image Analysis, vol. 78, p.
102385, 2022.

S. Huang, T. Xu, N. Shen, F. Mu, and J. Li, “Rethinking few-shot
medical segmentation: a vector quantization view,” in Proceedings of
the IEEE/CVF conference on computer vision and pattern recognition,
2023, pp. 3072-3081.

N. Ravi, V. Gabeur, Y.-T. Hu, R. Hu, C. Ryali, T. Ma, H. Khedr,
R. Rédle, C. Rolland, L. Gustafson et al., “Sam 2: Segment anything in
images and videos,” arXiv preprint arXiv:2408.00714, 2024.

O. Ronneberger, P. Fischer, and T. Brox, “U-net: Convolutional networks
for biomedical image segmentation,” in Medical image computing and
computer-assisted intervention—-MICCAI 2015: 18th international con-
ference, Munich, Germany, October 5-9, 2015, proceedings, part Il 18.
Springer, 2015, pp. 234-241.

T. Chen, L. Zhu, C. Ding, R. Cao, Y. Wang, Z. Li, L. Sun, P. Mao,
and Y. Zang, “Sam fails to segment anything?—sam-adapter: Adapting
sam in underperformed scenes: Camouflage, shadow, medical image
segmentation, and more,” arXiv preprint arXiv:2304.09148, 2023.

J. Zhang, K. Ma, S. Kapse, J. Saltz, M. Vakalopoulou, P. Prasanna, and
D. Samaras, “Sam-path: A segment anything model for semantic seg-
mentation in digital pathology,” in International Conference on Medical
Image Computing and Computer-Assisted Intervention. Springer, 2023,
pp. 161-170.

W. Yue, J. Zhang, K. Hu, Y. Xia, J. Luo, and Z. Wang, “Surgical-
sam: Efficient class promptable surgical instrument segmentation,” in
Proceedings of the AAAI Conference on Artificial Intelligence, vol. 38,
no. 7, 2024, pp. 6890-6898.



